Java 中的垃圾回收机制详解

目录
  • 介绍
  • 重要条款:
  • 使对象符合 GC 条件的方法
  • 请求JVM运行垃圾收集器的方式
  • 定稿
  • 总结

介绍

  • 在 C/C++ 中,程序员负责对象的创建和销毁。通常程序员会忽略无用对象的销毁。由于这种疏忽,在某些时候,为了创建新对象,可能没有足够的内存可用,整个程序将异常终止,导致OutOfMemoryErrors。
  • 但是在 Java 中,程序员不需要关心所有不再使用的对象。垃圾回收机制自动销毁这些对象。
  • 垃圾回收机制是守护线程的最佳示例,因为它始终在后台运行。
  • 垃圾回收机制的主要目标是通过销毁无法访问的对象来释放堆内存。

重要条款:

无法访问的对象: 如果一个对象不包含对它的任何引用,则称其为无法访问的对象。另请注意,属于隔离岛的对象也无法访问。

Integer i = new Integer(4);
// 新的 Integer 对象可通过 'i' 中的引用访问
i = null;
// Integer 对象不再可用。

1.垃圾回收的资格: 如果对象无法访问,则称该对象有资格进行 GC(垃圾回收)。在上图中,在i = null 之后; 堆区域中的整数对象有资格进行垃圾回收。

使对象符合 GC 条件的方法

  • 即使程序员不负责销毁无用的对象,但如果不再需要,强烈建议使对象不可访问(因此有资格进行 GC)。
  • 通常有四种不同的方法可以使对象适合垃圾回收。

1.取消引用变量

2.重新分配引用变量

3.在方法内部创建的对象

4.隔离岛

以上所有带有示例的方法都在单独的文章中讨论:如何使对象符合垃圾收集条件

请求JVM运行垃圾收集器的方式

  • 一旦我们使对象符合垃圾收集条件,垃圾收集器可能不会立即销毁它。每当 JVM 运行垃圾收集器程序时,只会销毁对象。但是当JVM运行Garbage Collector时,我们无法预料。
  • 我们还可以请求 JVM 运行垃圾收集器。

有两种方法可以做到:

1.使用System.gc() 方法:系统类包含静态方法gc() 用于请求 JVM 运行垃圾收集器。

2.使用Runtime.getRuntime().gc() 方法:运行时类允许应用程序与运行应用程序的 JVM 交互。因此,通过使用其 gc() 方法,我们可以请求 JVM 运行垃圾收集器。

// 演示请求 JVM 运行垃圾收集器的 Java 程序
public class Test
{
	public static void main(String[] args) throws InterruptedException
	{
		Test t1 = new Test();
		Test t2 = new Test();
		// 取消引用变量
		t1 = null;
		// 请求 JVM 来运行垃圾收集器
		System.gc();
		// 取消引用变量
		t2 = null;
		// 请求 JVM 来运行垃圾收集器
		Runtime.getRuntime().gc();
	}
	@Override
	// 在垃圾回收之前,在对象上调用一次 finalize 方法
	protected void finalize() throws Throwable
	{
		System.out.println("垃圾收集器调用");
		System.out.println("对象垃圾收集:" + this);
	}
}

输出:

垃圾收集器调用
对象垃圾收集:haiyong.Test@7ad74083
垃圾收集器调用
对象垃圾收集:haiyong.Test@7410a1a9

笔记 :

1.不能保证以上两种方法中的任何一种都一定会运行垃圾收集器。

2.调用System.gc() 等效于调用:Runtime.getRuntime().gc()

定稿

  • 就在销毁对象之前,垃圾收集器调用对象的finalize() 方法来执行清理活动。一旦finalize() 方法完成,垃圾收集器就会销毁该对象。
  • finalize() 方法存在于具有以下原型的Object 类中。
protected void finalize() throws Throwable

根据我们的要求,我们可以覆盖finalize() 方法来执行我们的清理活动,例如关闭数据库连接。

笔记 :

  • 垃圾收集器而不是JVM调用的finalize() 方法。虽然垃圾收集器是JVM的模块之一。
  • 对象类 finalize() 方法有空实现,因此建议覆盖finalize() 方法来处理系统资源或执行其他清理。
  • 对于任何给定的对象,finalize() 方法永远不会被多次调用。
  • 如果finalize() 方法抛出未捕获的异常,则忽略该异常并终止该对象的终结。

有关finalize() 方法的示例,请参阅Java 程序的输出第十套之垃圾收集

让我们举一个真实的例子,在那里我们使用垃圾收集器的概念。

假设你去字节跳动实习,他们告诉你写一个程序,计算在公司工作的员工人数(不包括实习生)。要制作这个程序,你必须使用垃圾收集器的概念。

这是您在公司获得的实际任务:-

: 编写一个程序来创建一个名为 Employee 的类,该类具有以下数据成员。

1.一个ID,用于存储分配给每个员工的唯一ID。

2.员工姓名。

3.员工年龄。

另外,提供以下方法-

1.用于初始化名称和年龄的参数化构造函数。ID 应在此构造函数中初始化。

2.显示 ID、姓名和年龄的方法 show()。

3.显示下一个员工的 ID 的方法 showNextId()。

现在对垃圾回收机制不了解的初学者可能会这样编写代码:

//计算在公司工作的员工人数的程序
class Employee
{
	private int ID;
	private String name;
	private int age;
	private static int nextId=1;
	//它是静态的,因为它在所有对象之间保持通用并由所有对象共享
	public Employee(String name,int age)
	{
		this.name = name;
		this.age = age;
		this.ID = nextId++;
	}
	public void show()
	{
		System.out.println
		("Id="+ID+"\nName="+name+"\nAge="+age);
	}
	public void showNextId()
	{
		System.out.println
		("Next employee id will be="+nextId);
	}
}
class UseEmployee
{
	public static void main(String []args)
	{
		Employee E=new Employee("GFG1",33);
		Employee F=new Employee("GFG2",45);
		Employee G=new Employee("GFG3",25);
		E.show();
		F.show();
		G.show();
		E.showNextId();
		F.showNextId();
		G.showNextId();
			{ //这是保留所有实习生的子块。
			Employee X=new Employee("GFG4",23);
			Employee Y=new Employee("GFG5",21);
			X.show();
			Y.show();
			X.showNextId();
			Y.showNextId();
		}
		//这个大括号之后,X 和 Y 将被移除。因此现在它应该显示 nextId 为 4。
		E.showNextId();//这一行的输出应该是 4,但它会给出 6 作为输出。
	}
}

输出:

现在获得正确的输出:

现在垃圾收集器(gc)将看到 2 个空闲的对象。现在递减 nextId,gc(garbage collector) 只会在我们的程序员在我们的类中覆盖它时调用方法 finalize() 。如前所述,我们必须请求 gc(garbage collector),为此,我们必须在关闭子块的大括号之前编写以下 3 个步骤。

1.将引用设置为 null(即 X = Y = null;)

2.调用,System.gc();

3.调用,System.runFinalization();

现在计算员工人数的正确代码(不包括实习生)

// 计算不包括实习生的员工人数的正确代码
class Employee
{
	private int ID;
	private String name;
	private int age;
	private static int nextId=1;
	//它是静态的,因为它在所有对象之间保持通用并由所有对象共享
	public Employee(String name,int age)
	{
		this.name = name;
		this.age = age;
		this.ID = nextId++;
	}
	public void show()
	{
		System.out.println
		("Id="+ID+"\nName="+name+"\nAge="+age);
	}
	public void showNextId()
	{
		System.out.println
		("Next employee id will be="+nextId);
	}
	protected void finalize()
	{
		--nextId;
		//在这种情况下,gc 会为 2 个对象调用 finalize() 两次。
	}
}
// 它是 Employee 类的右括号
class UseEmployee
{
	public static void main(String []args)
	{
		Employee E=new Employee("GFG1",33);
		Employee F=new Employee("GFG2",45);
		Employee G=new Employee("GFG3",25);
		E.show();
		F.show();
		G.show();
		E.showNextId();
		F.showNextId();
		G.showNextId();
		{
			//这是保留所有实习生的子块。
			Employee X=new Employee("GFG4",23);
			Employee Y=new Employee("GFG5",21);
			X.show();
			Y.show();
			X.showNextId();
			Y.showNextId();
			X = Y = null;
			System.gc();
			System.runFinalization();
		}
	E.showNextId();
	}
}

输出:

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注我们的更多内容!

(0)

相关推荐

  • Java垃圾回收之复制算法详解

    之前的Java垃圾回收之标记清除算法详解 会导致内存碎片.下文的介绍的coping算法可以解决内存碎片问题. 概述 如果jvm使用了coping算法,一开始就会将可用内存分为两块,from域和to域, 每次只是使用from域,to域则空闲着.当from域内存不够了,开始执行GC操作,这个时候,会把from域存活的对象拷贝到to域,然后直接把from域进行内存清理. 应用场景 coping算法一般是使用在新生代中,因为新生代中的对象一般都是朝生夕死的,存活对象的数量并不多,这样使用coping算法

  • Java垃圾回收之分代收集算法详解

    概述 这种算法,根据对象的存活周期的不同将内存划分成几块,新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法.可以用抓重点的思路来理解这个算法. 新生代对象朝生夕死,对象数量多,只要重点扫描这个区域,那么就可以大大提高垃圾收集的效率.另外老年代对象存储久,无需经常扫描老年代,避免扫描导致的开销. 新生代 在新生代,每次垃圾收集器都发现有大批对象死去,只有少量存活,采用复制算法,只需要付出少量存活对象的复制成本就可以完成收集:可以参看我之前写的Java垃圾回收之复制算法详解 老年代

  • Java分代垃圾回收策略原理详解

    一.为什么要分代 分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的.因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率. 在Java程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关,比如Http请求中的Session对象.线程.Socket连接,这类对象跟业务直接挂钩,因此生命周期比较长.但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,比如:String对象,由于其不变类的特性,系统会产生大量的这些对象,有些对象

  • java 垃圾回收机制以及经典垃圾回收器详解

    判断对象存活方法 引用计数法:在对象中添加一个引用计数子,每当一个地方引用他时,计数器就加一,当引用失效时,计数器就减一. 会有对象循环引用问题: objA.instance = objB objB.instance = objA objA 有objB 的引用 objB 有 objA 的引用,他们相互引用着对方.导致他们无法回收. 可达性分析: 从GC Roots 根对象作为起点,根据引用关系向下搜索,如果对象可达,就说明对象存活,如果对象不可达,就说明对象可以被回收. GC Roots的根对象

  • Java垃圾回收之标记压缩算法详解

    之前写过的一篇Java垃圾回收之标记清除算法详解 ,这个算法有个缺点就是造成内存碎片,存在不连续的空间,这样会导致申请较大空间的时候,又需要进行垃圾回收.下面介绍一下标记压缩算法,可以避免内存碎片. 空白部分是不连续的. 概述 这个算法的标记清除阶段,跟Java垃圾回收之标记清除算法详解  中的是一样的,而对于压缩阶段,它的工作就是移动所有的可达对象到堆内存的同一个区域中,使他们紧凑的排列在一起,从而将所有非可达对象释放出来的空闲内存都集中在一起,通过这样的方式来达到减少内存碎片的目的.如下图:

  • Java基础之垃圾回收机制详解

    一.GC的作用 进行内存管理 C语言中的内存,申请内存之后需要手动释放:一旦忘记释放,就会发生内存泄漏! 而Java语言中,申请内存后会由GC来释放内存空间,无需手动释放 GC虽然代替了手动释放的操作,但是它也有局限性: 需要消耗更多的资源: 没有手动释放那么及时: STW(Stop The World)会影响程序的执行效率 二.GC主要回收哪些内存 (1)堆:主要回收堆中的内存 (2)方法区:需要回收 (3)栈(包括本地方法栈和JVM虚拟机栈):不需要回收,栈上的内存什么时候释放是明确的(线程

  • Java垃圾回收机制算法详解

    概述 Java GC(Garbage Collection,垃圾回收)机制,是Java与C++/C的主要区别之一,作为Java开发者,一般不需要专门编写内存回收和垃圾清理代码,对内存泄露和溢出的问题,也不需要像C程序员那样战战兢兢.这是因为在Java虚拟机中,存在自动内存管理和垃圾清扫机制.概括地说,该机制对JVM中的内存进行标记,并确定哪些内存需要回收,根据一定的回收策略,自动的回收内存,永不停息的保证JVM中的内存空间,防止出现内存泄露和溢出问题. 在真实工作中的项目中,时不时的会发生内存溢

  • Java 中的垃圾回收机制详解

    目录 介绍 重要条款: 使对象符合 GC 条件的方法 请求JVM运行垃圾收集器的方式 定稿 总结 介绍 在 C/C++ 中,程序员负责对象的创建和销毁.通常程序员会忽略无用对象的销毁.由于这种疏忽,在某些时候,为了创建新对象,可能没有足够的内存可用,整个程序将异常终止,导致OutOfMemoryErrors. 但是在 Java 中,程序员不需要关心所有不再使用的对象.垃圾回收机制自动销毁这些对象. 垃圾回收机制是守护线程的最佳示例,因为它始终在后台运行. 垃圾回收机制的主要目标是通过销毁无法访问

  • Java 垃圾回收机制详解及实例代码

     Java 垃圾回收机制详解 乍一看,垃圾回收所做的事情应当恰如其名--查找并清除垃圾.事实上却恰恰相反.垃圾回收会跟踪所有仍在使用的对象,然后将剩余的对象标记为垃圾.牢记了这点之后,我们再来深入地了解下这个被称为"垃圾回收"的自动化内存回收在JVM中到底是如何实现的. 手动管理内存 在介绍现代版的垃圾回收之前,我们先来简单地回顾下需要手动地显式分配及释放内存的那些日子.如果你忘了去释放内存,那么这块内存就无法重用了.这块内存被占有了却没被使用.这种场景被称之为内存泄露. 下面是用C写

  • 掌握PHP垃圾回收机制详解

    php的垃圾回收机制可以简单总结为 引用计数 写时复制 COW机制, 本文主要和大家分享掌握php垃圾回收机制的知识,希望能帮助到大家. 引用计数基本知识 官网的解答如下 每个php变量存在一个叫"zval"的变量容器中一个zval变量容器,除了包含变量的类型和值 ,还包括两个字节的额外信息 is_ref 和 refcount is_ref 是个bool值,用来标识这个变量是否是属于引用集合(reference set).通过这个字节,php引擎才能把普通变量和引用变量区分开来 ref

  • python的内存管理和垃圾回收机制详解

    简单来说python的内存管理机制有三种 1)引用计数 2)垃圾回收 3)内存池 接下来我们来详细讲解这三种管理机制 1,引用计数: 引用计数是一种非常高效的内存管理手段,当一个pyhton对象被引用时其引用计数增加1,当其不再被引用时引用计数减1,当引用计数等于0的时候,对象就被删除了. 2,垃圾回收(这是一个很重要知识点): ①  引用计数 引用计数也是一种垃圾回收机制,而且是一种最直观,最简单的垃圾回收技术. 在Python中每一个对象的核心就是一个结构体PyObject,它的内部有一个引

  • 基于java中stack与heap的区别,java中的垃圾回收机制的相关介绍

    #. 在java中有两类内存.分别称为stack(堆栈)和heap(堆). stack是程序内存空间,因此所有的基本类型和对象的引用是存在stack中. heap是java虚拟机储存对象的,它是一个巨大的内存,当你创造一个对象,java虚拟机把对象放入heap中,把创造的对象的地址放入stack中. 因此,基本类型.对象的引用储存在stack中:对象储存在heap中. #. java中的垃圾回收机制 当你new一个新的对象,java分配必需的内存.当你用完一个对象时,java的垃圾回收器为你把内

  • PHP进阶学习之垃圾回收机制详解

    本文实例讲述了PHP垃圾回收机制.分享给大家供大家参考,具体如下: 一.概念 垃圾回收机制是一种动态存储分配的方案.它会自动释放程序不再需要的已分配的内存块.垃圾回收机制可以让程序员不必过分关心程序内存分配,从而将更多的精力投入到业务逻辑.在现在的流行各种语言当中,垃圾回收机制是新一代语言所共有的特征,如Python.PHP.C#.Ruby等都使用了垃圾回收机制. 二.PHP垃圾回收机制 1.在PHP5.3版本之前,使用的垃圾回收机制是单纯的"引用计数".即: ①每个内存对象都分配一个

  • Java 垃圾回收机制详解(动力节点Java学院整理)

    1. 垃圾回收的意义 在C++中,对象所占的内存在程序结束运行之前一直被占用,在明确释放之前不能分配给其它对象:而在Java中,当没有对象引用指向原先分配给某个对象的内存时,该内存便成为垃圾.JVM的一个系统级线程会自动释放该内存块.垃圾回收意味着程序不再需要的对象是"无用信息",这些信息将被丢弃.当一个对象不再被引用的时候,内存回收它占领的空间,以便空间被后来的新对象使用.事实上,除了释放没用的对象,垃圾回收也可以清除内存记录碎片.由于创建对象和垃圾回收器释放丢弃对象所占的内存空间,

  • JVM的垃圾回收机制详解和调优

    文章来源:matrix.org.cn 作者:ginger547 1.JVM的gc概述 gc即垃圾收集机制是指jvm用于释放那些不再使用的对象所占用的内存.java语言并不要求jvm有gc,也没有规定gc如何工作.不过常用的jvm都有gc,而且大多数gc都使用类似的算法管理内存和执行收集操作. 在充分理解了垃圾收集算法和执行过程后,才能有效的优化它的性能.有些垃圾收集专用于特殊的应用程序.比如,实时应用程序主要是为了避免垃圾收集中断,而大多数OLTP应用程序则注重整体效率.理解了应用程序的工作负荷

  • 一文带你回顾Java中的垃圾回收机制

    目录 介绍 重要条款: 使对象符合 GC 条件的方法 请求JVM运行垃圾收集器的方式 定稿 让我们举一个真实的例子,在那里我们使用垃圾收集器的概念. 现在获得正确的输出: 总结 介绍 在 C/C++ 中,程序员负责对象的创建和销毁.通常程序员会忽略无用对象的销毁.由于这种疏忽,在某些时候,为了创建新对象,可能没有足够的内存可用,整个程序将异常终止,导致OutOfMemoryErrors. 但是在 Java 中,程序员不需要关心所有不再使用的对象.垃圾回收机制自动销毁这些对象. 垃圾回收机制是守护

随机推荐