python DataFrame获取行数、列数、索引及第几行第几列的值方法

1、df=DataFrame([{‘A':'11','B':'12'},{‘A':'111','B':'121'},{‘A':'1111','B':'1211'}])

print df.columns.size#列数 2
print df.iloc[:,0].size#行数 3
print df.ix[[0]].index.values[0]#索引值 0
print df.ix[[0]].values[0][0]#第一行第一列的值 11
print df.ix[[1]].values[0][1]#第二行第二列的值 121

以上这篇python DataFrame获取行数、列数、索引及第几行第几列的值方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

您可能感兴趣的文章:

  • python获取元素在数组中索引号的方法
  • 对Python中DataFrame按照行遍历的方法
  • python pandas中DataFrame类型数据操作函数的方法
时间: 2018-04-06

python获取元素在数组中索引号的方法

本文实例讲述了python获取元素在数组中索引号的方法.分享给大家供大家参考.具体如下: 这里python是通过index方法获取索引号的 li = ['a', 'b', 'new', 'D', 'z', 'example', 'new', 'two', 'elements'] print li.index("example") print li.index("new") print li.index("z") print "c&quo

对Python中DataFrame按照行遍历的方法

在做分类模型时候,需要在DataFrame中按照行获取数据以便于进行训练和测试. import pandas as pd dict=[[1,2,3,4,5,6],[2,3,4,5,6,7],[3,4,5,6,7,8],[4,5,6,7,8,9],[5,6,7,8,9,10]] data=pd.DataFrame(dict) print(data) for indexs in data.index: print(data.loc[indexs].values[0:-1]) 实验结果: /usr/b

python pandas中DataFrame类型数据操作函数的方法

python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

python pandas中对Series数据进行轴向连接的实例

有时候我们想要的数据合并结果是数据的轴向连接,在pandas中这可以通过concat来实现.操作的对象通常是Series. Ipython中的交互代码如下: In [17]: from pandas import Series,DataFrame In [18]: series1 = Series(range(2),index = ['a','b']) In [19]: series2 = Series(range(3),index = ['c','d','e']) In [20]: serie

VBScript 中的字节数据操作函数

Asc 和 AscB.AscW Asc 函数返回与字符串的第一个字母对应的 ANSI 字符代码. Asc(string) AscB 函数和包含字节数据的字符串一起使用.AscB 不是返回第一个字符的字符代码,而是返回首字节. AscW 是为使用 Unicode 字符的 32 位平台提供的.它返回 Unicode (宽型)字符代码,因此可以避免从 ANSI 到 Unicode 的代码转换. Chr 和 ChrB.ChrW Chr 函数返回与指定的 ANSI 字符代码相对应的字符. Chr(char

在Python 3中实现类型检查器的简单方法

示例函数 为了开发类型检查器,我们需要一个简单的函数对其进行实验.欧几里得算法就是一个完美的例子: def gcd(a, b): '''Return the greatest common divisor of a and b.''' a = abs(a) b = abs(b) if a < b: a, b = b, a while b != 0: a, b = b, a % b return a 在上面的示例中,参数 a 和 b 以及返回值应该是 int 类型的.预期的类型将会以函数注解的形式

浅谈pandas中DataFrame关于显示值省略的解决方法

python的pandas库是一个非常好的工具,里面的DataFrame更是常用且好用,最近是越用越觉得设计的漂亮,pandas的很多细节设计的都非常好,有待使用过程中发掘. 好了,发完感慨,说一下最近DataFrame遇到的一个细节: 在使用DataFrame中有时候会遇到表格中的value显示不完全,像下面这样: In: import pandas as pd longString = u'''真正的科学家应当是个幻想家:谁不是幻想家,谁就只能把自己称为实践家.人生的磨难是很多的, 所以我们

浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)

pandas为我们提供了多种切片方法,而要是不太了解这些方法,就会经常容易混淆.下面举例对这些切片方法进行说明. 数据介绍 先随机生成一组数据: In [5]: rnd_1 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_2 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_3 = [random.randrange(1,20) for x in xrange(1

Python Pandas中根据列的值选取多行数据

Pandas中根据列的值选取多行数据 # 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column_name'].isin(some_values)] # 多种条件的选取 用 & df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)] # 选取不等于某些值的

在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例

最近在工作中,遇到了数据合并.连接的问题,故整理如下,供需要者参考~ 一.concat:沿着一条轴,将多个对象堆叠到一起 concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接.与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果. concat(objs, axis=0, join='outer', join_axes=None, ignore_ind

对python pandas中 inplace 参数的理解

pandas 中 inplace 参数在很多函数中都会有,它的作用是:是否在原对象基础上进行修改 inplace = True:不创建新的对象,直接对原始对象进行修改: ​inplace = False:对数据进行修改,创建并返回新的对象承载其修改结果. 默认是False,即创建新的对象进行修改,原对象不变,和深复制和浅复制有些类似. 例: inplace=True情况: import pandas as pd import numpy as np df=pd.DataFrame(np.rand

Pandas中DataFrame基本函数整理(小结)

构造函数 DataFrame([data, index, columns, dtype, copy]) #构造数据框 属性和数据 DataFrame.axes #index: 行标签:columns: 列标签 DataFrame.as_matrix([columns]) #转换为矩阵 DataFrame.dtypes #返回数据的类型 DataFrame.ftypes #返回每一列的 数据类型float64:dense DataFrame.get_dtype_counts() #返回数据框数据类