通过代码实例了解Python3编程技巧

高效处理数据类型方法:

处理数据

In [1]: from random import randint

In [2]: data=[randint(-10,10) for _ in range(10)]

In [3]: data
Out[3]: [-3, -4, 3, 4, 7, -2, -4, 1, 7, -9]

#过滤列表中的负数
In [9]: list(filter(lambda x:x>=0,data))
Out[9]: [3, 4, 7, 1, 7]

[for x in data if x>=0]
# 列表生成式解法
[x for x in data if x>=0]

#哪个更快,列表解析更快,远快于迭代
In [15]: %timeit [x for x in data if x>=0]
581 ns ± 23.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [16]: %timeit filter(lambda x:x>=0,data)
237 ns ± 4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

#得到20个同学的成绩
d={x:randint(60,100)for x in range(1,21)}
#字典解析式,iteritems同时迭代字典,
#
#得到分数大于90的同学
{k:v for k,v in d.items() if v>90}

#集合解析
In [35]: {x for x in s if x %3 ==0}
Out[35]: {-9, -3, 3}

#为元祖中的每个元素命名,提高程序可读性
#元祖存储空间小,访问速度快
#定义常量
NAME = 0
AGE=1
SEX=2
EMAIL=3
#拆包用法,定义类似其他语言的枚举类型,也就是定义数值常量
NAME,AGE,SEX,EMAIL=range(4)

#案例
student=('Jim',16,'male','jin@163.com')
#name
print(student[0])
#age
print(student[1])
#通过常量可以优化为
print(student[NAME])
print(student[AGE])

#namedtuple是继承自tuple的子类,namedtuple和tuple比较有更酷的特性
#namedtuple创建一个和tuple类似的对象,而且对象拥有可以访问的属性。这对象更像带有数据属性的类,不过数据属性是只读的。
from collections import namedtuple
Student = namedtuple('Student',['name','age','sex','email'])
s=Student('Jim',16,'male','jim@163.com')
s.name
s.age

#统计序列中元素出现的频度
from random import randint
data=[randint(0,20) for _ in range(30)]
#创建字典{0:0,1:0,...}
#方法1
c=dict.fromkeys(data,0)
In [52]: for x in data:
  ...:   c[x]+=1

#方法2,统计词频
from collections import Counter
c2=Counter(data)#讲序列传入Counter的构造器,得到Counter对象是元素频度的字典
#使用most_common统计词频
In [58]: c2.most_common(3)
Out[58]: [(10, 4), (20, 3), (8, 3)]
#统计英文作文词频
import re
txt=open('emmmm.txt').read()
#分割后赋给Counter
c3=Counter(re.split('\W',txt))
#找到频率最高的10个单词
c3.most_common(10)

#内置函数是以c的速度运行,如sorted
from random import randint
d={x:randint(60,100) for x in 'xyzabc'}
#{'a': 91, 'b': 65, 'c': 76, 'x': 85, 'y': 84, 'z': 72}
# sorted(d)
In [15]: zip(d.values(),d.keys())
Out[15]: <zip at 0x108b34dc8>

In [16]: list(zip(d.values(),d.keys()))
Out[16]: [(68, 'x'), (70, 'y'), (77, 'z'), (72, 'a'), (65, 'b'), (69, 'c')]

#快速找到多个字典中的公共键
#In [1]: from random import randint,sample

In [2]: sample('abcdefg',3)
Out[2]: ['c', 'a', 'b']

In [4]: sample('abcdefg',randint(3,6))
Out[4]: ['b', 'a', 'd']

In [5]: s1={x:randint(1,4)for x in sample('abcdefg',randint(3,6))}

In [9]: s1
Out[9]: {'a': 1, 'b': 2, 'c': 3, 'f': 3, 'g': 3}

In [10]: s1={x:randint(1,4)for x in sample('abcdefg',randint(3,6))}

In [11]: s1
Out[11]: {'b': 2, 'd': 3, 'g': 3}

In [12]: s1
Out[12]: {'b': 2, 'd': 3, 'g': 3}

In [13]: s2={x:randint(1,4)for x in sample('abcdefg',randint(3,6))}

In [15]: s3={x:randint(1,4)for x in sample('abcdefg',randint(3,6))}
#for循环遍历方法,找到s2,s3都有的k
In [19]: res=[]

In [20]: for k in s1:
  ...:   if k in s2 and k in s3:
  ...:     res.append(k
  ...:     )
  ...:
  ...:     

In [21]: res
Out[21]: ['b']
#通过字典的keys()方法,找到三个字典同样的key
In [26]: s1.keys()&s2.keys()&s3.keys()
Out[26]: {'b'}
#通过map得到一个迭代器对象
#In [27]: map(dict.keys,[s1,s2,s3])
Out[27]: <map at 0x108891b70>

In [28]: list(map(dict.keys,[s1,s2,s3]))
Out[28]:
[dict_keys(['g', 'd', 'b']),
 dict_keys(['g', 'a', 'c', 'b', 'f']),
 dict_keys(['d', 'f', 'b', 'c', 'e', 'a'])]
#通过reduce取出同样结果
In [30]: from functools import reduce

In [31]: reduce(lambda a,b:a&b,map(dict.keys,[s1,s2,s3]))
Out[31]: {'b'}

#使得
from time import time
from random import randint
from collections import OrderedDict

d=OrderedDict()
players = list("ABCDEFGH")
start=time()
for i in range(8):
  input()
  p=players.pop(randint(0,8-i))
  end=time()
  print(i+1,p,end-start)
  d[p]=(i+1,end-start)
print('')
print('-'*20)
for k in d:
  print(k,d[k])
#查看用户历史记录功能,标准库collections的deque,双端循环队列,存在内容中,pickle存储到文件
from random import randint
from collections import deque
N = randint(0,100)
history = deque([],5)
def guess(K):
  if K ==N:
   print('正确')
   return True
  if K < N:
   print('%s is less-than N'%K)
  else:
    print("%s is greater-than N"%K)
  return False
while True:
  line = input("请输入一个数字:")
  if line.isdigit():
   k=int(line)
   history.append(k)
   if guess(k):
     break
  elif line =='history' or line =='h?':
    print(list(history))

可迭代对象和迭代器对象:

可迭代与迭代器对象

可迭代对象和迭代器对象

需求:从网络抓取每个城市的气温消息,显示
北京:15-20
黑龙江:3-10
上海13-19
一次抓取所有城市信息,会占很大的存储空间,现在想“用时访问”,吧所有城市气温封装到一个对象里,用for迭代

可迭代对象:

In [1]: l=[1,2,3,4,5]

In [2]: s='abcde'

iter内置函数,可以得到一个迭代器对象
由可迭代对象,得到迭代器

iter(l)

In [23]: type(l)
Out[23]: list

In [24]: type(iter(l))
Out[24]: list_iterator

可迭代对象都有__iter方法,可迭代接口
或者__getitem__序列接口

可迭代对象可以通过next()取值

In [26]: t=iter(l)

In [27]: next(t)
Out[27]: 1

In [28]: next(t)
Out[28]: 2

In [29]: next(t)
Out[29]: 3

In [30]: next(t)
Out[30]: 4

In [31]: next(t)
Out[31]: 5

In [32]: next(t)
---------------------------------------------------------------------------
StopIteration               Traceback (most recent call last)
<ipython-input-32-f843efe259be> in <module>()
----> 1 next(t)

StopIteration: 

读写取excel文件

Microsoft Excel是Microsoft为使用Windows和Apple Macintosh操作系统的计算机编写的一款电子表格软件。直观的界面、出色的计算功能和图表工具,再加上成功的市场营销,使Excel成为最流行的个人计算机数据处理软件。

xlrd使用方法

import xlrd
#打开excel文件,创建一个workbook对象,book对象也就是s11.xlsx文件,表含有sheet名
rbook=xlrd.open_workbook('/Users/yuchao/s11.xlsx')
#sheets方法返回对象列表,[<xlrd.sheet.Sheet object at 0x103f147f0>]
rbook.sheets()
rsheet=rbook.sheet_by_index(0)
#访问行数
rows=rsheet.nrows
#访问列数
cols=rsheet.ncols
print('行数:',rows,'列数',cols)
#通过cell的位置坐标取得cell值
cell=rsheet.cell(0,0)
print('0,0坐标的值是:',cell.value)
#取得第二行的值,参数是(行数,起点,终点)
row1=rsheet.row_values(1)
print('第一行的值是:',row1)

xlwt修改excel

# -*- coding:utf-8 -*-
# Author : yuchao
# Data : 2018/7/18 16:08

import xlrd, xlwt

rbook = xlrd.open_workbook('/Users/yuchao/s11.xlsx')
rsheet = rbook.sheet_by_index(0) # 取得sheet对象1
# 列数
nc = rsheet.ncols
# 写入一条数据
rsheet.put_cell(0, nc, xlrd.XL_CELL_TEXT, '总分', None)

# 遍历数据的行数
for row in range(1, rsheet.nrows):
  # 求和每一行数据
  t = sum(rsheet.row_values(row, 1))
  rsheet.put_cell(row, nc, xlrd.XL_CELL_NUMBER, t, None)
#创建文档对象
wbook = xlwt.Workbook()
wsheet = wbook.add_sheet(rsheet.name)
#设置样式
style = xlwt.easyxf('align: vertical center, horizontal center')
#遍历每一行
for r in range(rsheet.nrows):
  #每一列
  for c in range(rsheet.ncols):
    wsheet.write(r,c,rsheet.cell_value(r,c),style)
wbook.save('/Users/yuchao/s11_bak.xlsx')

读取excel

import xlrd
from xlrd.book import Book
from xlrd.sheet import Sheet
from xlrd.sheet import Cell

workbook = xlrd.open_workbook('/Users/yuchao/s11.xlsx')

sheet_names = workbook.sheet_names()

# sheet = workbook.sheet_by_name('工作表1')
sheet = workbook.sheet_by_index(1)

# 循环Excel文件的所有行
for row in sheet.get_rows():
  # 循环一行的所有列
  for col in row:
    # 获取一个单元格中的值
    print(col.value)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

时间: 2020-10-12

Python编程语言的35个与众不同之处(语言特征和使用技巧)

一.Python介绍 从我开始学习Python时我就决定维护一个经常使用的"窍门"列表.不论何时当我看到一段让我觉得"酷,这样也行!"的代码时(在一个例子中.在StackOverflow.在开源码软件中,等等),我会尝试它直到理解它,然后把它添加到列表中.这篇文章是清理过列表的一部分.如果你是一个有经验的Python程序员,尽管你可能已经知道一些,但你仍能发现一些你不知道的.如果你是一个正在学习Python的C.C++或Java程序员,或者刚开始学习编程,那么你会像

总结Python编程中三条常用的技巧

在 python 代码中可以看到一些常见的 trick,在这里做一个简单的小结. json 字符串格式化 在开发 web 应用的时候经常会用到 json 字符串,但是一段比较长的 json 字符串是可读性较差的,不容易看出来里面结构的. 这时候就可以用 python 来把 json 字符串漂亮的打印出来. root@Exp-1:/tmp# cat json.txt {"menu": {"breakfast": {"English Muffin":

给Python初学者的一些编程技巧

交换变量   x = 6 y = 5 x, y = y, x print x >>> 5 print y >>> 6 if 语句在行内 print "Hello" if True else "World" >>> Hello 连接 下面的最后一种方式在绑定两个不同类型的对象时显得很cool. nfc = ["Packers", "49ers"] afc = ["R

Python编程中实现迭代器的一些技巧小结

yield实现迭代器 如引言中的描述,实现一个可迭代的功能要是每次都手动实现iter,next稍稍有点麻烦,所需的代码也是比较客观.在python中也能通过借助yield的方式来实现一个迭代器.yield有一个关键的作能,它能够中断当前的执行逻辑,保持住现场(各种值的状态,执行的位置等等),返回相应的值,下一次执行的时候能够无缝的接着上次的地方继续执行,如此循环反复知道满足事先设置的退出条件或者发生错误强制被中断. 其具体功能是可以当return使用,从函数里返回一个值,不同之处是用yield返

Python高效编程技巧

下面我挑选出的这几个技巧常常会被人们忽略,但它们在日常编程中能真正的给我们带来不少帮助. 1. 字典推导(Dictionary comprehensions)和集合推导(Set comprehensions) 大多数的Python程序员都知道且使用过列表推导(list comprehensions).如果你对list comprehensions概念不是很熟悉--一个list comprehension就是一个更简短.简洁的创建一个list的方法. >>> some_list = [1,

python编程开发之textwrap文本样式处理技巧

本文实例讲述了python编程开发之textwrap文本样式处理技巧.分享给大家供大家参考,具体如下: 在看python的API的时候,发现python的textwrap在处理字符串样式的时候功能强大 在这里我做了一个demo: textwrap提供了一些方法: wrap(text, width = 70, **kwargs):这个函数可以把一个字符串拆分成一个序列 from textwrap import * #使用textwrap中的wrap()方法 def test_wrap(): tes

35个Python编程小技巧

这篇博客其实就是这个集合整理后一部分的公开亮相.如果你已经是个python大牛,那么基本上你应该知道这里面的大多数用法了,但我想你应该也能发现一些你不知道的新技巧.而如果你之前是一个c,c++,java的程序员,同时在学习python,或者干脆就是一个刚刚学习编程的新手,那么你应该会看到很多特别有用能让你感到惊奇的实用技巧,就像我当初一样. 每一个技巧和语言用法都会在一个个实例中展示给大家,也不需要有其他的说明.我已经尽力把每个例子弄的通俗易懂,但是因为读者对python的熟悉程度不同,仍然可能

python 19个值得学习的编程技巧

Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净.整洁.一目了然.要写出 Pythonic(优雅的.地道的.整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests.flask.tornado,下面列举一些常见的Pythonic写法. 0. 程序必须先让人读懂,然后才能让计算机执行. "Programs must be written for people to read, and only incidentally f

符合语言习惯的 Python 优雅编程技巧【推荐】

Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净.整洁.一目了然.要写出 Pythonic(优雅的.地道的.整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests.flask.tornado,下面列举一些常见的Pythonic写法. 0. 程序必须先让人读懂,然后才能让计算机执行. "Programs must be written for people to read, and only incidentally f

有关Python的22个编程技巧

1. 原地交换两个数字 Python 提供了一个直观的在一行代码中赋值与交换(变量值)的方法,请参见下面的示例: x,y= 10,20 print(x,y) x,y= y,x print(x,y) #1 (10, 20) #2 (20, 10) 赋值的右侧形成了一个新的元组,左侧立即解析(unpack)那个(未被引用的)元组到变量 <a> 和 <b>. 一旦赋值完成,新的元组变成了未被引用状态并且被标记为可被垃圾回收,最终也完成了变量的交换. 2. 链状比较操作符 比较操作符的聚合

适合Python初学者的一些编程技巧

这篇文章主要介绍了给Python初学者的一些编程技巧,皆是基于基础的一些编程习惯建议,需要的朋友可以参考下 交换变量 x = 6 y = 5 x, y = y, x print x >>> 5 print y >>> 6 if 语句在行内 print "Hello" if True else "World" >>> Hello 连接 下面的最后一种方式在绑定两个不同类型的对象时显得很co nfc = ["

使用Python中的线程进行网络编程的入门教程

引言 对于 Python 来说,并不缺少并发选项,其标准库中包括了对线程.进程和异步 I/O 的支持.在许多情况下,通过创建诸如异步.线程和子进程之类的高层模块,Python 简化了各种并发方法的使用.除了标准库之外,还有一些第三方的解决方案,例如 Twisted.Stackless 和进程模块.本文重点关注于使用 Python 的线程,并使用了一些实际的示例进行说明.虽然有许多很好的联机资源详细说明了线程 API,但本文尝试提供一些实际的示例,以说明一些常见的线程使用模式. 全局解释器锁 (G

浅析Python中else语句块的使用技巧

学过C/C++的都知道,else语句是和if语句搭配使用的,但是在Python中,else语句更像是作为一个模块,不仅仅可以和if语句搭配,还可以和循环语句,异常处理语句搭配使用. 下面逐个进行介绍: <1> if 语句 条件表达式为真的时候,执行代码块1,否则执行代码块2. (其实就是一个二选一的问题,必然有一个执行) Python中if...else...的扩展模式:多个if条件判断,如下图所示:整个代码块的执行,是顺着某些箭头方向走到结束(图中的黑点). 这里需要注意的是,表达式1,2,

Python多进程并发与多线程并发编程实例总结

本文实例总结了Python多进程并发与多线程并发.分享给大家供大家参考,具体如下: 这里对python支持的几种并发方式进行简单的总结. Python支持的并发分为多线程并发与多进程并发(异步IO本文不涉及).概念上来说,多进程并发即运行多个独立的程序,优势在于并发处理的任务都由操作系统管理,不足之处在于程序与各进程之间的通信和数据共享不方便:多线程并发则由程序员管理并发处理的任务,这种并发方式可以方便地在线程间共享数据(前提是不能互斥).Python对多线程和多进程的支持都比一般编程语言更高级

关于Python形参打包与解包小技巧分享

Python中的函数调用与c++不同的是将this指针直接作为self当作第一个形参进行处理,从而将静态函数与实例方法的调用形式统一了起来.在实际编程过程中,可以通过传递函数的地址.函数的形参的方式将所有函数(包括静态函数.类实例函数)的调用用统一的方式表达出来,方便统一接口和抽象. 待传递的2个函数如下: class Operation: @staticmethod def close_buy(): """ :return: """ print

Python查找第n个子串的技巧分享

Problem Python中str类自带的find.index方法可以返回第一个匹配的子串的位置,但是如果实际使用中需要查找第2个甚至第n个子串的位置该怎么办呢.也许有的码友可能会用到第二第三个参数,指定查找的起始.终止位置.但是在很多情况下,接收到的一个字符串可能是未知的,强制限定起始位置可能导致代码在某些情况下不能适用. Solution 采用嵌套的方法调用find或者index. str_exp = "aaabbbbccc" pos_n = str_exp.index(&quo

Python正规则表达式学习指南

1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大.得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的编程语言实现支持的语法数量不同:但不用担心,不被支持的语法通常是不常用的部分.如果已经在其他语言里使用过正则表达式,只需要简单看一看就可以上手了. 下图展示了使用正则表达式进行匹配的流程: 正则表达式的大致

Python减少循环层次和缩进的技巧分析

本文实例分析了Python减少循环层次和缩进的技巧.分享给大家供大家参考,具体如下: 我们知道Python中冒号和缩进代表大括号,这样写已经可以节省很多代码行数,但是可以更优化,尽可能减少循环的层次和缩进,让代码看起来更简洁,逻辑更清楚.不仅Python语言如此,其他语言也一样. 如图,是两段Python代码,前后两段要实现的功能是一样的,但是第二段明显可读性更好,逻辑更佳清晰.在很多循环嵌套的时候,其实可以用"逆向思维",用continue跳出不符合条件的循环,而不是成立的时候继续执