Python中内置数据类型list,tuple,dict,set的区别和用法

Python语言简洁明了,可以用较少的代码实现同样的功能。这其中Python的四个内置数据类型功不可没,他们即是list, tuple, dict, set。这里对他们进行一个简明的总结。

List

字面意思就是一个集合,在Python中List中的元素用中括号[]来表示,可以这样定义一个List:

L = [12, 'China', 19.998]

可以看到并不要求元素的类型都是一样的。当然也可以定义一个空的List:

L = []

Python中的List是有序的,所以要访问List的话显然要通过序号来访问,就像是数组的下标一样,一样是下标从0开始:

>>> print L[0]
12

千万不要越界,否则会报错

>>> print L[3]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

List也可以倒序访问,通过“倒数第x个”这样的下标来表示序号,比如-1这个下标就表示倒数第一个元素:

>>> L = [12, 'China', 19.998]
>>> print L[-1]
19.998

-4的话显然就越界了

>>> print L[-4]

Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
  print L[-4]
IndexError: list index out of range
>>>

List通过内置的append()方法来添加到尾部,通过insert()方法添加到指定位置(下标从0开始):

>>> L = [12, 'China', 19.998]
>>> L.append('Jack')
>>> print L
[12, 'China', 19.998, 'Jack']
>>> L.insert(1, 3.14)
>>> print L
[12, 3.14, 'China', 19.998, 'Jack']
>>>

通过pop()删除最后尾部元素,也可以指定一参数删除指定位置:

>>> L.pop()
'Jack'
>>> print L
[12, 3.14, 'China', 19.998]
>>> L.pop(0)
12
>>> print L
[3.14, 'China', 19.998]

也可以通过下标进行复制替换

>>> L[1] = 'America'
>>> print L
[3.14, 'America', 19.998]

Tuple

Tuple可以看做是一种“不变”的List,访问也是通过下标,用小括号()表示:

>>> t = (3.14, 'China', 'Jason')
>>> print t
(3.14, 'China', 'Jason')

但是不能重新赋值替换:

>>> t[1] = 'America'

Traceback (most recent call last):
 File "<pyshell#21>", line 1, in <module>
  t[1] = 'America'
TypeError: 'tuple' object does not support item assignment

也没有pop和insert、append方法。

可以创建空元素的tuple:

t = ()
或者单元素tuple (比如加一个逗号防止和声明一个整形歧义):

t = (3.14,)

那么tuple这个类型到底有什么用处呢?要知道如果你希望一个函数返回多个返回值,其实只要返回一个tuple就可以了,因为tuple里面的含有多个值,而且是不可变的(就像是java里面的final)。当然,tuple也是可变的,比如:

>>> t = (3.14, 'China', 'Jason', ['A', 'B'])
>>> print t
(3.14, 'China', 'Jason', ['A', 'B'])
>>> L = t[3]
>>> L[0] = 122
>>> L[1] = 233
>>> print t
(3.14, 'China', 'Jason', [122, 233])

这是因为Tuple所谓的不可变指的是指向的位置不可变,因为本例子中第四个元素并不是基本类型,而是一个List类型,所以t指向的该List的位置是不变的,但是List本身的内容是可以变化的,因为List本身在内存中的分配并不是连续的。

Dict

Dict是Python中非常重要的数据类型,就像它的字面意思一样,它是个活字典,其实就是Key-Value键值对,类似于HashMap,可以用花括号{}通过类似于定义一个C语言的结构体那样去定义它:

>>> d = {
  'Adam': 95,
  'Lisa': 85,
  'Bart': 59,
  'Paul': 75
}
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}

可以看到打印出来的结果都是Key:Value的格式,可以通过len函数计算它的长度(List,tuple也可以):

>>> len(d)
4

可以直接通过键值对方式添加dict中的元素:

>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}
>>> d['Jone'] = 99
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}

List和Tuple用下标来访问内容,而Dict用Key来访问: (字符串、整型、浮点型和元组tuple都可以作为dict的key)

>>> print d['Adam']
95

如果Key不存在,会报错:

>>> print d['Jack']

Traceback (most recent call last):
 File "<pyshell#40>", line 1, in <module>
  print d['Jack']
KeyError: 'Jack'

所以访问之前最好先查询下key是否存在:

>>> if 'Adam' in d : print 'exist key'

exist key

或者直接用保险的get方法:

>>> print d.get('Adam')
95
>>> print d.get('Jason')
None

至于遍历一个dict,实际上是在遍历它的所有的Key的集合,然后用这个Key来获得对应的Value:

>>> for key in d : print key, ':', d.get(key)

Lisa : 85
Paul : 75
Adam : 95
Bart : 59

Dict具有一些特点:

查找速度快。无论是10个还是10万个,速度都是一样的,但是代价是耗费的内存大。List相反,占用内存小,但是查找速度慢。这就好比是数组和链表的区别,数组并不知道要开辟多少空间,所以往往开始就会开辟一个大空间,但是直接通过下标查找速度快;而链表占用的空间小,但是查找的时候必须顺序的遍历导致速度很慢
没有顺序。Dict是无顺序的,而List是有序的集合,所以不能用Dict来存储有序集合
Key不可变,Value可变。一旦一个键值对加入dict后,它对应的key就不能再变了,但是Value是可以变化的。所以List不可以当做Dict的Key,但是可以作为Value:

>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}
>>> d['NewList'] = [12, 23, 'Jack']
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}

Key不可重复。(下面例子中添加了一个'Jone':0,但是实际上原来已经有'Jone'这个Key了,所以仅仅是改了原来的value)

>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}
>>> d['Jone'] = 0
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 0, 'Lisa': 85, 'Paul': 75}

Dict的合并,如何将两个Dict合并为一个,可以用dict函数:

>>> d1 = {'mike':12, 'jack':19}
>>> d2 = {'jone':22, 'ivy':17}
>>> dMerge = dict(d1.items() + d2.items())
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}

或者

>>> dMerge2 = dict(d1, **d2)
>>> print dMerge2
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}

方法2比方法1速度快很多,方法2等同于:

>>> dMerge3 = dict(d1)
>>> dMerge3.update(d2)
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}

set

set就像是把Dict中的key抽出来了一样,类似于一个List,但是内容又不能重复,通过调用set()方法创建:

>>> s = set(['A', 'B', 'C'])
就像dict是无序的一样,set也是无序的,也不能包含重复的元素。

对于访问一个set的意义就仅仅在于查看某个元素是否在这个集合里面:

>>> print 'A' in s
True
>>> print 'D' in s
False

大小写是敏感的。

也通过for来遍历:

s = set([('Adam', 95), ('Lisa', 85), ('Bart', 59)])
#tuple
for x in s:
  print x[0],':',x[1]

>>>
Lisa : 85
Adam : 95
Bart : 59

通过add和remove来添加、删除元素(保持不重复),添加元素时,用set的add()方法:

>>> s = set([1, 2, 3])
>>> s.add(4)
>>> print s
set([1, 2, 3, 4])

如果添加的元素已经存在于set中,add()不会报错,但是不会加进去了:

>>> s = set([1, 2, 3])
>>> s.add(3)
>>> print s
set([1, 2, 3])

删除set中的元素时,用set的remove()方法:

>>> s = set([1, 2, 3, 4])
>>> s.remove(4)
>>> print s
set([1, 2, 3])

如果删除的元素不存在set中,remove()会报错:

>>> s = set([1, 2, 3])
>>> s.remove(4)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 4

所以如果我们要判断一个元素是否在一些不同的条件内符合,用set是最好的选择,下面例子:

months = set(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec',])
x1 = 'Feb'
x2 = 'Sun'

if x1 in months:
  print 'x1: ok'
else:
  print 'x1: error'

if x2 in months:
  print 'x2: ok'
else:
  print 'x2: error'

>>>
x1: ok
x2: error
时间: 2015-12-13

Python中扩展包的安装方法详解

前言 作为一个pythoner ,包的安装时必须懂的,这个语言跟matlab很类似,开源.共享,只要你有好的方法,都可以作为一个库,供大家下载使用,毕竟俗话说:"人生苦短,请用Python吗",下面话不多说,我们来一起看看详细的介绍吧. 方法如下: 1.单文件模块 将包拷贝到python安装目录下Lib下,eg:D:\py\Lib. 2.多文件模块 找到模块包(压缩文件zip或tar.gz)下载,进行解压,然后控制台中执行:python setup.py install xxx即可 3

使用C语言扩展Python程序的简单入门指引

一.简介 Python是一门功能强大的高级脚本语言,它的强大不仅表现在其自身的功能上,而且还表现在其良好的可扩展性上,正因如此,Python已经开始受到越来越多人的青睐,并且被屡屡成功地应用于各类大型软件系统的开发过程中. 与其它普通脚本语言有所不同,Python程序员可以借助Python语言提供的API,使用C或者C++来对Python进行功能性扩展,从而即可以利用Python方便灵活的语法和功能,又可以获得与C或者C++几乎相同的执行性能.执行速度慢是几乎所有脚本语言都具有的共性,也是倍受人

Python内置数据类型详解

通常来说Python在编程语言中的定位为脚本语言--scripting language 高阶动态编程语言. Python是以数据为主,变量的值改变是指变量去指到一个地址. 即:Id(变量)->展示变量的地址. 因此一个具体的值,会有不同的变量名. Python的数据类型: 数字.字符串.列表.元组.字典 数字和字符串其实是很基本的数据类型,在Python中和其他语言相差不是很大的,在这里就不细讲了. Dictionary介绍: Dictionary是Python的内置数据类型之一,它定义了键和

vc6编写python扩展的方法分享

系统环境:VC6 + Python-2.5.4 1.下载Python-2.5.4源码. 2.解压,打开D:\Python-2.5.4\PC\VC6\pcbuild.dsw,编译,D:\Python-2.5.4\PC\VC6\下得到python25.dll.python25_d.dll.python25.lib.python25_d.lib. 3.使用VC6建立一个动态链接库工程,拷贝D:\Python-2.5.4\PC\example_nt\example.c到工程目录下,并添加到工程中. 4.

python基础教程之基本内置数据类型介绍

Python基本内置数据类型有哪些 一些基本数据类型,比如:整型(数字).字符串.元组.列表.字典和布尔类型.随着学习进度的加深,大家还会接触到更多更有趣的数据类型,python初学者入门时先了解这几种类型就可以了. 基本内置数据类型对应符号 1)整型--int--数字python有5种数字类型,最常见的就是整型int.例如:1234.-12342)布尔型--bool--用符号==表示布尔型是一种比较特殊的python数字类型,它只有True和False两种值,它主要用来比较和判断,所得结果叫做

Python实现扩展内置类型的方法分析

本文实例讲述了Python实现扩展内置类型的方法.分享给大家供大家参考,具体如下: 简介 除了实现新的类型的对象方式外,有时我们也可以通过扩展Python内置类型,从而支持其它类型的数据结构,比如为列表增加队列的插入和删除的方法.本文针对此问题,结合实现集合功能的实例,介绍了扩展Python内置类型的两种方法:通过嵌入内置类型来扩展类型和通过子类方式扩展类型. 通过嵌入内置类型扩展 下面例子通过将list对象作为嵌入类型,实现集合对象,并增加了一下运算符重载.这个类知识包装了Python的列表,

使用Pyrex来扩展和加速Python程序的教程

Pyrex 是一种专门设计用来编写 Python 扩展模块的语言.根据 Pyrex Web 站点的介绍,"它被设计用来在友好易用的高级 Python 世界和凌乱的低级 C 世界之间搭建一个桥梁."虽然几乎所有的 Python 代码都可以作为有效的 Pyrex 代码使用,但是您可以在 Pyrex 代码中添加可选的静态类型声明,从而使得这些声明过的对象以 C 语言的速度运行. 加速 Python 从某种意义上来说,Pyrex 只是不断发展的 Python 类语言系列的一个部分:Jython

详解Python的Django框架中manage命令的使用与扩展

[简介] django-admin.py是Django的一个用于管理任务的命令行工具.本文将描述它的大概用法. 另外,在每一个Django project中都会有一个manage.py.manage.py是对django-admin.py的简单包装,它额外帮助我们做了两件事情: 它将你的project的包放到sys.path中 它将DJANGO_SETTINGS_MODULE环境变量设置为了你的project的setting.py文件的位置. 如果你是通过setup.py工具来安装Django的

详解Python中内置的NotImplemented类型的用法

它是什么? >>> type(NotImplemented) <type 'NotImplementedType'> NotImplemented 是Python在内置命名空间中的六个常数之一.其他有False.True.None.Ellipsis 和 __debug__.和 Ellipsis很像,NotImplemented 能被重新赋值(覆盖).对它赋值,甚至改变属性名称, 不会产生 SyntaxError.所以它不是一个真正的"真"常数.当然,我们应

Python中内置的日志模块logging用法详解

logging模块简介 Python的logging模块提供了通用的日志系统,可以方便第三方模块或者是应用使用.这个模块提供不同的日志级别,并可以采用不同的方式记录日志,比如文件,HTTP GET/POST,SMTP,Socket等,甚至可以自己实现具体的日志记录方式. logging模块与log4j的机制是一样的,只是具体的实现细节不同.模块提供logger,handler,filter,formatter. logger:提供日志接口,供应用代码使用.logger最长用的操作有两类:配置和发

对Python中内置异常层次结构详解

如下所示: BaseException +-- SystemExit +-- KeyboardInterrupt +-- GeneratorExit +-- Exception +-- StopIteration +-- StandardError | +-- BufferError | +-- ArithmeticError | | +-- FloatingPointError | | +-- OverflowError | | +-- ZeroDivisionError | +-- Asse

详解 Python中LEGB和闭包及装饰器

详解 Python中LEGB和闭包及装饰器 LEGB L>E>G?B L:local函数内部作用域 E:enclosing函数内部与内嵌函数之间 G:global全局作用域 B:build-in内置作用域 python 闭包 1.Closure:内部函数中对enclosing作用域变量的引用 2.函数实质与属性 函数是一个对象 函数执行完成后内部变量回收 函数属性 函数返回值 passline = 60 def func(val): if val >= passline: print (

详解springboot-修改内置tomcat版本

详解springboot-修改内置tomcat版本 1.解析Spring Boot父级依赖 <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>1.5.6.RELEASE</version> </parent> 这块配置就是Spring

详解python中的 is 操作符

大家可以与Java中的 == 操作符相互印证一下,加深一下对引用和对象的理解.原问题: Python为什么直接运行和在命令行运行同样语句但结果却不同,他们的缓存机制不同吗? 其实,高票答案已经说得很详细了.我只是再补充一点而已. is 操作符是Python语言的一个内建的操作符.它的作用在于比较两个变量是否指向了同一个对象. 与 == 的区别 class A(): def __init__(self, v): self.value = v def __eq__(self, t): return

详解python中executemany和序列的使用方法

详解python中executemany和序列的使用方法 一 代码 import sqlite3 persons=[ ("Jim","Green"), ("Hu","jie") ] conn=sqlite3.connect(":memory:") conn.execute("CREATE TABLE person(firstname,lastname)") conn.executeman

详解python中 os._exit() 和 sys.exit(), exit(0)和exit(1) 的用法和区别

详解python中 os._exit() 和 sys.exit(), exit(0)和exit(1) 的用法和区别 os._exit() 和 sys.exit() os._exit() vs sys.exit() 概述 Python的程序有两中退出方式:os._exit(), sys.exit().本文介绍这两种方式的区别和选择. os._exit()会直接将python程序终止,之后的所有代码都不会继续执行. sys.exit()会引发一个异常:SystemExit,如果这个异常没有被捕获,那

详解python中的文件与目录操作

详解python中的文件与目录操作 一 获得当前路径 1.代码1 >>>import os >>>print('Current directory is ',os.getcwd()) Current directory is D:\Python36 2.代码2 如果将上面的脚本写入到文件再运行 Current directory is E:\python\work 二 获得目录的内容 Python代码 >>> os.listdir (os.getcwd

详解python中asyncio模块

一直对asyncio这个库比较感兴趣,毕竟这是官网也非常推荐的一个实现高并发的一个模块,python也是在python 3.4中引入了协程的概念.也通过这次整理更加深刻理解这个模块的使用 asyncio 是干什么的? 异步网络操作并发协程 python3.0时代,标准库里的异步网络模块:select(非常底层) python3.0时代,第三方异步网络库:Tornado python3.4时代,asyncio:支持TCP,子进程 现在的asyncio,有了很多的模块已经在支持:aiohttp,ai