Python 使用matplotlib模块模拟掷骰子

掷骰子

骰子类

# die.py 骰子类模块
from random import randint
class Die():
  """骰子类"""
  def __init__(self, num_sides=6):
    """默认六面的骰子"""
    self.num_sides = num_sides
  def roll(self):
    """掷骰子的方法"""
    return randint(1, self.num_sides)

折线图掷骰子

# die_visual_plot.py 使用plot可视化骰子
import matplotlib.pyplot as plt
from die import Die
# Initialization
die = Die()
# 掷骰子
results = [die.roll() for x in range(1000)]
# 分析结果
frequencies = [results.count(x) for x in range(1, die.num_sides+1)]
# 可视化结果
values = [x for x in range(1, die.num_sides+1)]
plt.plot(values, frequencies, linewidth=2, marker='o', markerfacecolor='yellow', markersize=5, color='b')
# 设置图表
plt.title('Roll a die using matplotlib', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Frequency', fontsize=14)
# 显示数据
for x, y in zip(values, frequencies):
  # 将y数据加载到(x,y)位置
  plt.text(x, y, y, fontsize=12, color='red', ha='center', va='bottom')
# 显示结果
plt.show()

散点图掷骰子

# die_visual_scatter.py 使用scatter可视化骰子
import matplotlib.pyplot as plt
from die import Die
# Initialization
die = Die()
# 掷骰子
results = [die.roll() for x in range(1000)]
# 分析结果
frequencies = [results.count(x) for x in range(1, die.num_sides+1)]
# 可视化结果
values = [x for x in range(1, die.num_sides+1)]
plt.scatter(values, frequencies, c=frequencies, cmap=plt.cm.Blues, edgecolor='none', s=10)
# 设置图表
plt.title('Roll a die using matplotlib', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Frequency', fontsize=14)
# 显示数据
for x, y in zip(values, frequencies):
  # 将y数据加载到(x,y)位置
  plt.text(x, y, y, fontsize=12, color='red', ha='center', va='bottom')
# 显示结果
plt.show()

 

总结

以上所述是小编给大家介绍的Python 使用matplotlib模块模拟掷骰子,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

(0)

相关推荐

  • Python matplotlib 画图窗口显示到gui或者控制台的实例

    我们再用Jupyter-notebook,ipython-console,qtconsole的时候,有的时候画图希望不弹出窗口,直接画在console里,又得时候有希望弹出窗口,因为console里太小了 那么我们可以用下面的命令 %matplotlib inline 然后在控制台里画图就可以显示在控制台里 %matplotlib qt5 #备选参数: ['auto', 'gtk', 'gtk3', 'inline', 'nbagg', 'notebook', 'osx', 'qt', 'qt4

  • Python使用matplotlib绘制三维图形示例

    本文实例讲述了Python使用matplotlib绘制三维图形.分享给大家供大家参考,具体如下: 用二维泡泡图表示三维数据 泡泡的坐标2维,泡泡的大小三维,使用到的函数 plt.scatter(P[:,0], P[:,1], s=S, lw = 1.5, edgecolors = C, facecolors='None') 其中P[:,0], P[:,1]为泡泡的坐标数据,s为泡泡的大小,lw为泡泡的边线宽度,edgecolors为边线颜色,facecolors为填充颜色 代码及注释 # -*-

  • Python实现曲线拟合操作示例【基于numpy,scipy,matplotlib库】

    本文实例讲述了Python实现曲线拟合操作.分享给大家供大家参考,具体如下: 这两天学习了用python来拟合曲线. 一.环境配置 本人比较比较懒,所以下载的全部是exe文件来安装,安装按照顺利来安装.自动会找到python的安装路径,一直点下一步就行.还有其他的两种安装方式:一种是解压,一种是pip.我没有尝试,就不乱说八道了. 没有ArcGIS 环境的,可以不看下面这段话了. 在配置环境时遇见一个小波折,就是原先电脑装过ArcGIS10.2 ,所以其会默认安装python2.7,而且pyth

  • python使用matplotlib模块绘制多条折线图、散点图

    今天想直观的展示一下数据就用到了matplotlib模块,之前都是一张图只有一条曲线,现在想同一个图片上绘制多条曲线来对比,实现很简单,具体如下: #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:折线图.散点图测试 ''' import random import matplotlib import matplotlib.pyplot as plt def list2mat(data_list,w): ''' 切片.转置 '

  • python使用matplotlib绘制热图

    python常用的绘图库就是matplotlib,今天在给公司绘图时,偶然间发现matplotlib可以绘制热图,并且十分简洁,拿出来跟大家分享一下.(由于涉及到公司数据问题,这里采用随机数生成数据进行实验) import random from matplotlib import pyplot as plt from matplotlib import cm from matplotlib import axes from matplotlib.font_manager import Font

  • python matplotlib 在指定的两个点之间连线方法

    为了找到matplotlib在两个点之间连线的方法真是费了好大功夫,最后还是决定用简单的 plt.plot 来解决.如果有好多对点,则可以通过循环实现连接,还可以用 plt.arrow 画箭头,具体可参考这里 import matplotlib.pyplot as plt x = [[1, 3], [2, 5]] # 要连接的两个点的坐标 y = [[4, 7], [6, 3]] for i in range(len(x)): plt.plot(x[i], y[i], color='r') pl

  • Python matplotlib通过plt.scatter画空心圆标记出特定的点方法

    在用python画散点图的时候想标记出特定的点,比如在某些点的外围加个空心圆,一样可以通过plt.scatter实现 import matplotlib.pyplot as plt x = [[1, 3], [2, 5]] y = [[4, 7], [6, 3]] for i in range(len(x)): plt.plot(x[i], y[i], color='r') plt.scatter(x[i], y[i], color='b') plt.scatter(x[i], y[i], co

  • 对python中Matplotlib的坐标轴的坐标区间的设定实例讲解

    如下所示: <span style="font-family: Arial, Helvetica, sans-serif;">>>> import numpy as np</span> >>> import matplotlib.pyplot as plt >>> x=np.arange(-5,5,0.01) >>> y=x**3 >>> plt.axis([-6,6,-1

  • Python matplotlib的使用并自定义colormap的方法

    0.前言 添加colormap的对象是灰度图,可以变成热量图,从而更加明显的发现一些规律,适用于一些雷达图像等 from PIL import Image # 将彩色图片转换成黑白图片 im=Image.open("./pic.jpg").convert('L') # 保存图片 im.save("image.jpg") 1.从灰色图片中读取数据,转换成colormap图 import matplotlib.pyplot as plt import matplotli

  • python matplotlib绘图,修改坐标轴刻度为文字的实例

    工作中偶尔需要做客流分析,用pyplot 库绘图.一般情况下, x 轴刻度默认显示为数字. 例如: 我希望x 轴刻度显示为星期日期. 查询pyplot 文档, 发现了 xtick() 函数可以修改刻度. 代码如下: import matplotlib.pyplot as plt import numpy as np #val_ls = [np.random.randint(100) + i*20 for i in range(7)] scale_ls = range(7) index_ls =

  • Python数据分析matplotlib设置多个子图的间距方法

    注意,要看懂这里,必须具备简单的Python数据分析知识,必须知道matplotlib的简单使用! 例1: plt.subplot(221) # 第一行的左图 plt.subplot(222) # 第一行的右图 plt.subplot(212) # 第二整行 plt.title('xxx') plt.tight_layout() #设置默认的间距 例2: for i in range(25): plt.subplot(5,5,i+1) plt.tight_layout() 例3: # 设定画图板

随机推荐