python numpy数组复制使用实例解析

这篇文章主要介绍了python numpy数组复制使用实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

在使用python时我们经常会处理数组,有的时候是复制有的时候不是,这里也是初学者最容易误解的地方,简单讲,可以分为下面三种情况:

不是复制的情况(No Copy at All)

import numpy as np
a = np.arange(12) #a为一个序列
b = a #没有创建新的对象
print('a的shape为:', a.shape) # 输出a的尺寸
print('b是a吗?', b is a) #ab 为同一个对象的两个名字
b.shape = 3, 4 #将b的shape改变
print('a的shape变为:', a.shape) #a的shanpe也跟着改变了

输出结果

a的shape为: (12,)
b是a吗? True
a的shape变为: (3, 4)

查看或浅复制(View or Shallow Copy)

不同的数组对象可以分型相同的数据,view方法创建一个与原来数组相同的新对象

a = np.arange(12)
c = a.view() # 建立一个和a一样的c
print('c未改变时a的shape为:', a.shape) # 输出a的尺寸
print('c是a吗?', c is a)
print('c 是以a为基础建立的吗', c.base is a)
c.shape = 3, 4
print('c改变后a的shape为:', a.shape)

输出结果:

c是a吗? False
c 是以a为基础建立的吗 True
a的shape为: (12,)
a的shape为: (12,)

深复制(Deep Copy)

这个时候d是a的复制,只是单纯的复制,两者没有一点关系

a = np.arange(12)
d = a.copy() # 建立一个和a一样的c
print('d是a吗?', d is a)
print('d是以a为基础建立的吗', d.base is a)

输出结果:

d是a吗? False
d是以a为基础建立的吗 False

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

时间: 2020-01-10

python将txt等文件中的数据读为numpy数组的方法

实际中,很多数据都是存为txt文件.csv文件等,但是在程序中处理的时候numpy数组或列表是最方便的.本文简单介绍读入txt文件以及将之转化为numpy数组或列表的方法. 1 将txt文件读为list并转化为numpy数组 import numpy as np file = open('filename.txt') val_list = file.readlines() lists =[] for string in val_list: string = string.split('\t',3

python+numpy按行求一个二维数组的最大值方法

问题描述: 给定一个二维数组,求每一行的最大值 返回一个列向量 如: 给定数组[1,2,3:4,5,3] 返回[3:5] import numpy as np x = np.array([[1,2,3],[4,5,3]]) # 先求每行最大值得下标 index_max = np.argmax(x, axis=1)# 其中,axis=1表示按行计算 print(index_max.shape) max = x[range(x.shape[0]), index_max] print(max) # 注

Python打开文件,将list、numpy数组内容写入txt文件中的方法

python保存numpy数据: numpy.savetxt("result.txt", numpy_data); 保存list数据: file=open('data.txt','w') file.write(str(list_data)); file.close() 以上这篇Python打开文件,将list.numpy数组内容写入txt文件中的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

Python快速转换numpy数组中Nan和Inf的方法实例说明

在使用numpy数组的过程中时常会出现nan或者inf的元素,可能会造成数值计算时的一些错误.这里提供一个numpy库函数的用法,使nan和inf能够最简单地转换成相应的数值. numpy.nan_to_num(x): 使用0代替数组x中的nan元素,使用有限的数字代替inf元素 使用范例: >>>import numpy as np >>> a = np.array([[np.nan,np.inf],\ ... [-np.nan,-np.inf]]) >>

Python numpy实现二维数组和一维数组拼接的方法

撰写时间:2017.5.23 一维数组 1.numpy初始化一维数组 a = np.array([1,2,3]); print a.shape 输出的值应该为(3,) 二维数组 2.numpy初始化二维数组 a = np.array([[1,2,3]]); b = np.array([[1],[2],[3]]); print a.shape//(1,3) print b.shape//(3,1) 注意(3,)和(3,1)的数组是不一样的,前者是一维数组,后者是二维数组. 拼接 3.numpy有很

Python 取numpy数组的某几行某几列方法

直接分析,如原矩阵如下(1): (1) 我们要截取的矩阵(取其一三行,和三四列数据构成矩阵)为如下(2): (2) 错误分析: 取 C 的1 3行,3 4 列,定义 Z = [0,2] #定义行数 d = [2,3] #定义列数 #代码 C_zd = C[z,d] 则结果为: 由结果分析取的是第一行第三列和第三行第四列的数据,并非我们想要的结果. 正确分析: C_A = c[[0,2]] #先取出想要的行数据 C_A = C_A[:,[2,3]] #再取出要求的列数据 print(C_A) #输

python numpy数组的索引和切片的操作方法

NumPy - 简介 NumPy 是一个 Python 包. 它代表 "Numeric Python". 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的. 也开发了另一个包 Numarray ,它拥有一些额外的功能. 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包. 这个开源项目有很多贡献者. NumPy 操作 使用Nu

讲解Python3中NumPy数组寻找特定元素下标的两种方法

引子 Matlab中有一个函数叫做find,可以很方便地寻找数组内特定元素的下标,即:Find indices and values of nonzero elements. 这个函数非常有用.比如,我们想计算图1中点Q(x0, y0)抛物线的最短距离.一个可以实施的方法是:计算出抛物线上所有点到Q点的距离,找到最小值,用find函数找到最小值对应的下标,即M点横坐标和纵坐标对应的元素的下标,M点到Q点的距离就是最短距离. 首先给出Matlab使用find函数实现的代码: a = linspac

基于java中byte数组与int类型的转换(两种方法)

java中byte数组与int类型的转换,在网络编程中这个算法是最基本的算法,我们都知道,在socket传输中,发送.者接收的数据都是 byte数组,但是int类型是4个byte组成的,如何把一个整形int转换成byte数组,同时如何把一个长度为4的byte数组转换为int类型.下面有两种方式. public static byte[] int2byte(int res) { byte[] targets = new byte[4]; targets[0] = (byte) (res & 0xf

Vue.js项目中管理每个页面的头部标签的两种方法

在 Vue SPA 应用中,如果想要修改 HTML 的头部标签,如页面的 title ,我们只能去修改 index.html 模板文件,但是这个是全局的修改,如何为每个页面都设置不一样的 title 呢?下面介绍两种方法. 使用router.meta 在路由里面配置每个路由的地址: routes: [ { /* (首页)默认路由地址 */ path: '/', name: 'Entrance', component: Entrance, meta: { title: '首页入口' } }, {

可视化Swing中JTable控件绑定SQL数据源的两种方法深入解析

在 MyEclipse 的可视化 Swing 中,有 JTable 控件.JTable 用来显示和编辑常规二维单元表.那么,如何将 数据库SQL中的数据绑定至JTable中呢?在这里,提供两种方法.JTable的构造方法通过查阅Java的API,可以可以得到JTable的两个重要的构造方法:JTable(Object[][] rowData, Object[] columnNames)构造一个 JTable 来显示二维数组 rowData 中的值,其列名称为 columnNames.JTable

详解Angular中实现自定义组件的双向绑定的两种方法

在 Angular 中,对于表单元素,通过 [(ngModel)] 即可以简单地实现双向绑定.对于自定义组件而言,希望实现同样的效果可以怎么做呢? 1 实现自定义组件的 ngModel 指令 如果希望自定义组件能够具有与表单元素相同的 ngModel 效果,可以通过在组件内实现 ControlValueAccessor 接口达到目的. 对于 [(ngModel)] ,需要至少实现该接口的如下方法: interface ControlValueAccessor { writeValue(obj:

js中判断文本框是否为空的两种方法

复制代码 代码如下: //用户名非空验证 function checkUserName(){ var name = document.myform.txtUser; //在这里我认为: name 代表的name 为 txtUser 的文本框 if(name.value.length==0){ alert("请输入用户名"); name.focus(); return false; }else{return true;} } //密码非空验证+确认验证 function checkPas

JavaScrip数组删除特定元素的几种方法总结

前言 可能一说到删除数组特定元素你估计不止一种方法可以实现,那么下面且来看看我总结的这几种方法,可能会对你有所帮助!话不多说了,来一起看看详细的介绍吧. 源数组 var arr = ["George", "John", "Thomas", "James", "Adrew", "Martin"]; 伪删除 什么是伪删除呢? 就是说将数组元素值设置为null; arr[ arr.indexO

DWR3 访问WEB元素的两种方法实例详解

DWR3访问WEB元素主要有两种方法, 第一种是类似于SpringMVC的用法,直接使用,也就是说在需要使用DWR来远程调用的方法上给一个需要用到的WEB元素作为参数,这个参数在调用该方法的时候不需要用户来传递,当调用该方法的时候系统会自动的给该参数赋值,这时候我们就可以在方法体中自由的使用了! 如: public void test(HttpSession session) { System.out.println(session.getId()); } public void test(St

基于Python中numpy数组的合并实例讲解

Python中numpy数组的合并有很多方法,如 - np.append() - np.concatenate() - np.stack() - np.hstack() - np.vstack() - np.dstack() 其中最泛用的是第一个和第二个.第一个可读性好,比较灵活,但是占内存大.第二个则没有内存占用大的问题. 方法一--append parameters introduction arr 待合并的数组的复制(特别主页是复制,所以要多耗费很多内存) values 用来合并到上述数组

python3库numpy数组属性的查看方法

实例如下所示: import numpy as np a1 = np.array([1,2,3,4],dtype=np.complex128) print(a1) print("数据类型",type(a1)) #打印数组数据类型 print("数组元素数据类型:",a1.dtype) #打印数组元素数据类型 print("数组元素总数:",a1.size) #打印数组尺寸,即数组元素总数 print("数组形状:",a1.sh