C++实现LeetCode(10.正则表达式匹配)

[LeetCode] 10. Regular Expression Matching 正则表达式匹配

Given an input string (s) and a pattern (p), implement regular expression matching with support for '.' and '*'.

'.' Matches any single character.
'*' Matches zero or more of the preceding element.

The matching should cover the entire input string (not partial).

Note:

  • s could be empty and contains only lowercase letters a-z.
  • p could be empty and contains only lowercase letters a-z, and characters like . or *.

Example 1:

Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".

Example 2:

Input:
s = "aa"
p = "a*"
Output: true
Explanation: '*' means zero or more of the precedeng element, 'a'. Therefore, by repeating 'a' once, it becomes "aa".

Example 3:

Input:
s = "ab"
p = ".*"
Output: true
Explanation: ".*" means "zero or more (*) of any character (.)".

Example 4:

Input:
s = "aab"
p = "c*a*b"
Output: true
Explanation: c can be repeated 0 times, a can be repeated 1 time. Therefore it matches "aab".

Example 5:

Input:
s = "mississippi"
p = "mis*is*p*."
Output: false

这道求正则表达式匹配的题和那道 Wildcard Matching 的题很类似,不同点在于*的意义不同,在之前那道题中,*表示可以代替任意个数的字符,而这道题中的*表示之前那个字符可以有0个,1个或是多个,就是说,字符串 a*b,可以表示b或是 aaab,即a的个数任意,这道题的难度要相对之前那一道大一些,分的情况的要复杂一些,需要用递归 Recursion 来解,大概思路如下:

- 若p为空,若s也为空,返回 true,反之返回 false。

- 若p的长度为1,若s长度也为1,且相同或是p为 '.' 则返回 true,反之返回 false。

- 若p的第二个字符不为*,若此时s为空返回 false,否则判断首字符是否匹配,且从各自的第二个字符开始调用递归函数匹配。

- 若p的第二个字符为*,进行下列循环,条件是若s不为空且首字符匹配(包括 p[0] 为点),调用递归函数匹配s和去掉前两个字符的p(这样做的原因是假设此时的星号的作用是让前面的字符出现0次,验证是否匹配),若匹配返回 true,否则s去掉首字母(因为此时首字母匹配了,我们可以去掉s的首字母,而p由于星号的作用,可以有任意个首字母,所以不需要去掉),继续进行循环。

- 返回调用递归函数匹配s和去掉前两个字符的p的结果(这么做的原因是处理星号无法匹配的内容,比如 s="ab", p="a*b",直接进入 while 循环后,我们发现 "ab" 和 "b" 不匹配,所以s变成 "b",那么此时跳出循环后,就到最后的 return 来比较 "b" 和 "b" 了,返回 true。再举个例子,比如 s="", p="a*",由于s为空,不会进入任何的 if 和 while,只能到最后的 return 来比较了,返回 true,正确)。

解法一:

class Solution {
public:
    bool isMatch(string s, string p) {
        if (p.empty()) return s.empty();
        if (p.size() == 1) {
            return (s.size() == 1 && (s[0] == p[0] || p[0] == '.'));
        }
        if (p[1] != '*') {
            if (s.empty()) return false;
            return (s[0] == p[0] || p[0] == '.') && isMatch(s.substr(1), p.substr(1));
        }
        while (!s.empty() && (s[0] == p[0] || p[0] == '.')) {
            if (isMatch(s, p.substr(2))) return true;
            s = s.substr(1);
        }
        return isMatch(s, p.substr(2));
    }
};

上面的方法可以写的更加简洁一些,但是整个思路还是一样的,先来判断p是否为空,若为空则根据s的为空的情况返回结果。当p的第二个字符为*号时,由于*号前面的字符的个数可以任意,可以为0,那么我们先用递归来调用为0的情况,就是直接把这两个字符去掉再比较,或者当s不为空,且第一个字符和p的第一个字符相同时,再对去掉首字符的s和p调用递归,注意p不能去掉首字符,因为*号前面的字符可以有无限个;如果第二个字符不为*号,那么就老老实实的比较第一个字符,然后对后面的字符串调用递归,参见代码如下:

解法二:

class Solution {
public:
    bool isMatch(string s, string p) {
        if (p.empty()) return s.empty();
        if (p.size() > 1 && p[1] == '*') {
            return isMatch(s, p.substr(2)) || (!s.empty() && (s[0] == p[0] || p[0] == '.') && isMatch(s.substr(1), p));
        } else {
            return !s.empty() && (s[0] == p[0] || p[0] == '.') && isMatch(s.substr(1), p.substr(1));
        }
    }
};

我们也可以用 DP 来解,定义一个二维的 DP 数组,其中 dp[i][j] 表示 s[0,i) 和 p[0,j) 是否 match,然后有下面三种情况(下面部分摘自这个帖子):

1.  P[i][j] = P[i - 1][j - 1], if p[j - 1] != '*' && (s[i - 1] == p[j - 1] || p[j - 1] == '.');
2.  P[i][j] = P[i][j - 2], if p[j - 1] == '*' and the pattern repeats for 0 times;
3.  P[i][j] = P[i - 1][j] && (s[i - 1] == p[j - 2] || p[j - 2] == '.'), if p[j - 1] == '*' and the pattern repeats for at least 1 times.

解法三:

class Solution {
public:
    bool isMatch(string s, string p) {
        int m = s.size(), n = p.size();
        vector<vector<bool>> dp(m + 1, vector<bool>(n + 1, false));
        dp[0][0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (j > 1 && p[j - 1] == '*') {
                    dp[i][j] = dp[i][j - 2] || (i > 0 && (s[i - 1] == p[j - 2] || p[j - 2] == '.') && dp[i - 1][j]);
                } else {
                    dp[i][j] = i > 0 && dp[i - 1][j - 1] && (s[i - 1] == p[j - 1] || p[j - 1] == '.');
                }
            }
        }
        return dp[m][n];
    }
};

到此这篇关于C++实现LeetCode(10.正则表达式匹配)的文章就介绍到这了,更多相关C++实现正则表达式匹配内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2021-07-09

C++实现LeetCode(9.验证回文数字)

[LeetCode] 9. Palindrome Number 验证回文数字 Determine whether an integer is a palindrome. An integer is a palindrome when it reads the same backward as forward. Example 1: Input: 121 Output: true Example 2: Input: -121 Output: false Explanation: From left

C++实现LeetCode(6.字型转换字符串)

[LeetCode] 6. ZigZag Conversion 之字型转换字符串 The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P   A   H   N A P L S I I G Y  

C++实现LeetCode(验证回文字符串)

[LeetCode] 125.Valid Palindrome 验证回文字符串 Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignoring cases. For example, "A man, a plan, a canal: Panama" is a palindrome. "race a car" is not a

C++实现LeetCode(7.翻转整数)

[LeetCode] 7. Reverse Integer 翻转整数 Given a 32-bit signed integer, reverse digits of an integer. Example 1: Input: 123 Output: 321 Example 2: Input: -123 Output: -321 Example 3: Input: 120 Output: 21 Note: Assume we are dealing with an environment whi

C++实现LeetCode(647.回文子字符串)

[LeetCode] 647. Palindromic Substrings 回文子字符串 Given a string, your task is to count how many palindromic substrings in this string. The substrings with different start indexes or end indexes are counted as different substrings even they consist of sa

C++实现LeetCode(8.字符串转为整数)

[LeetCode] 8. String to Integer (atoi) 字符串转为整数 Implement atoi which converts a string to an integer. The function first discards as many whitespace characters as necessary until the first non-whitespace character is found. Then, starting from this ch

C++实现LeetCode(132.拆分回文串之二)

[LeetCode] 132.Palindrome Partitioning II 拆分回文串之二 Given a string s, partition s such that every substring of the partition is a palindrome. Return the minimum cuts needed for a palindrome partitioning of s. Example: Input: "aab" Output: 1 Explan

C++实现LeetCode(131.拆分回文串)

[LeetCode] 131.Palindrome Partitioning 拆分回文串 Given a string s, partition s such that every substring of the partition is a palindrome. Return all possible palindrome partitioning of s. Example: Input: "aab" Output: [ ["aa","b"

Java实现查找当前字符串最大回文串代码分享

先看代码 public class MaxHuiWen { public static void main(String[] args) { // TODO Auto-generated method stub String s = "abb"; MaxHuiWen(s); } //1.输出回文串 public static void MaxHuiWen(String s){ //存储字符串的长度 int length = s.length(); //存储最长的回文串 String M

js如何找出字符串中的最长回文串

本文实例为大家分享了js找出字符串中的最长回文串的具体代码,供大家参考,具体内容如下 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <title>回文</title> <link rel=&q

python最长回文串算法

给定一个字符串,要求在这个字符串中找到符合回文性质的最长子串.所谓回文性是指诸如 "aba","ababa","abba"这类的字符串,当然单个字符以及两个相邻相同字符也满足回文性质. 看到这个问题,最先想到的解决方法自然是暴力枚举,通过枚举字符串所有字串的起点,逐一判断满足回文性的子串,记录长度并更新最长长度.显然这种算法的时间复杂度是很高的,最坏情况可以达到O(N*N).所以呢,这里提出一个优化的方案,通过枚举字符串子串的中心而不是起点,向两

python实现求最长回文子串长度

给定一个字符串,求它最长的回文子串长度,例如输入字符串'35534321',它的最长回文子串是'3553',所以返回4. 最容易想到的办法是枚举出所有的子串,然后一一判断是否为回文串,返回最长的回文子串长度.不用我说,枚举实现的耗时是我们无法忍受的.那么有没有高效查找回文子串的方法呢?答案当然是肯定的,那就是中心扩展法,选择一个元素作为中心,然后向外发散的寻找以该元素为圆心的最大回文子串.但是又出现了新的问题,回文子串的长度即可能是基数,也可能好是偶数,对于长度为偶数的回文子串来说是不存在中心元

Python实现常见的回文字符串算法

回文 利用python 自带的翻转 函数 reversed() def is_plalindrome(string): return string == ''.join(list(reversed(string)))` 自己实现 def is_plalindrome(string): string = list(string) length = len(string) left = 0 right = length - 1 while left < right: if string[left]

python实现对求解最长回文子串的动态规划算法

基于Python实现对求解最长回文子串的动态规划算法,具体内容如下 1.题目 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为1000. 示例 1: 输入: "babad" 输出: "bab" 注意: "aba"也是一个有效答案. 示例 2: 输入: "cbbd" 输出: "bb" 2.求解 对于暴力求解在这里就不再骜述了,着重介绍如何利用动态规划算法进行求解. 关于动态规划的含

Python3最长回文子串算法示例

本文实例讲述了Python3最长回文子串算法.分享给大家供大家参考,具体如下: 1. 暴力法 思路:对每一个子串判断是否回文 class Solution: def longestPalindrome(self, s): """ :type s: str :rtype: str """ if len(s) == 1: return s re = s[0] for i in range(0,len(s)-1): for j in range(i+1

Python实现寻找回文数字过程解析

回文数字是很有意思的数字,不管从最高位开始念,还是从个位开始念,最终结果都一样,有一种对称美. 下面是回文数字的函数判断方式: def is_palindrome(n): str_num = str(n) len_num = len(str_num) if len_num <= 2 and str_num[0] == str_num[-1]: return True else: half_len = round(len_num/2) for i in range(half_len): if no

利用正则表达式判断一个给定的字符是否是回文

如果给定的字符串是回文,返回true,反之,返回false. 如果一个字符串忽略标点符号.大小写和空格,正着读和反着读一模一样,那么这个字符串就是palindrome(回文). 注意你需要去掉字符串多余的标点符号和空格,然后把字符串转化成小写来验证此字符串是否为回文. 函数参数的值可以为"racecar","RaceCar"和"race CAR". 关键代码: 去掉字符串中的标点符号和空白格.可以用str.replace()+正则表达式匹配. v

java 实现判断回文数字的实例代码

前言: 有这样一类数字,它们顺着看和倒着看是相同的数,例如:121.656.2332等,这样的数字就称为回文数字.编写一个Java程序,判断从键盘接收的数字是否为回文数字. 2.解题思想 从回文数字的特点出发,弄清楚其特点是解决本问题的关键.解决方案可以通过将该数字倒置的办法来判断它是否是回文数字,例如:586,它的倒置结果为685,因为586!=685,故586不是回文数字. 3.Java代码 import java.util.Scanner; public class Palindrome