50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

目前计算机视觉(CV)与自然语言处理(NLP)及语音识别并列为人工智能三大热点方向,而计算机视觉中的对象检测(objectdetection)应用非常广泛,比如自动驾驶、视频监控、工业质检、医疗诊断等场景。

目标检测的根本任务就是将图片或者视频中感兴趣的目标提取出来,目标的识别可以基于颜色、纹理、形状。其中颜色属性运用十分广泛,也比较容易实现。下面就向大家分享一个我做的小实验———通过OpenCV的Python接口来实现从视频中进行颜色识别和跟踪。

下面就是我们完整的代码实现(已调试运行):

import numpy as np
import cv2
font = cv2.FONT_HERSHEY_SIMPLEX
lower_green = np.array([35, 110, 106]) # 绿色范围低阈值
upper_green = np.array([77, 255, 255]) # 绿色范围高阈值
lower_red = np.array([0, 127, 128]) # 红色范围低阈值
upper_red = np.array([10, 255, 255]) # 红色范围高阈值
#需要更多颜色,可以去百度一下HSV阈值!
# cap = cv2.VideoCapture('1.mp4') # 打开视频文件
cap = cv2.VideoCapture(0)#打开USB摄像头
if (cap.isOpened()): # 视频打开成功
 flag = 1
else:
 flag = 0
num = 0
if (flag):
 while (True):
 ret, frame = cap.read() # 读取一帧

 if ret == False: # 读取帧失败
  break
 hsv_img = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
 mask_green = cv2.inRange(hsv_img, lower_green, upper_green) # 根据颜色范围删选
 mask_red = cv2.inRange(hsv_img, lower_red, upper_red)
 # 根据颜色范围删选
 mask_green = cv2.medianBlur(mask_green, 7) # 中值滤波
 mask_red = cv2.medianBlur(mask_red, 7) # 中值滤波
 mask = cv2.bitwise_or(mask_green, mask_red)
 mask_green, contours, hierarchy = cv2.findContours(mask_green, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
 mask_red, contours2, hierarchy2 = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

 for cnt in contours:
  (x, y, w, h) = cv2.boundingRect(cnt)
  cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), 2)
  cv2.putText(frame, "Green", (x, y - 5), font, 0.7, (0, 255, 0), 2)

 for cnt2 in contours2:
  (x2, y2, w2, h2) = cv2.boundingRect(cnt2)
  cv2.rectangle(frame, (x2, y2), (x2 + w2, y2 + h2), (0, 255, 255), 2)
  cv2.putText(frame, "Red", (x2, y2 - 5), font, 0.7, (0, 0, 255), 2)
 num = num + 1
 cv2.imshow("dection", frame)
 cv2.imwrite("imgs/%d.jpg"%num, frame)
 if cv2.waitKey(20) & 0xFF == 27:
  break
cv2.waitKey(0)
cv2.destroyAllWindows()

如图所示,我们将会检测到红色区域

最终的效果图:

总结

以上所述是小编给大家介绍的50行Python代码实现视频中物体颜色识别和跟踪,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

时间: 2019-11-18

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

[更新]主要提供两种方案: 方案一:(参考网上代码,感觉实用性不是很强)使用PIL截取图像,然后将RGB转为HSV进行判断,统计判断颜色,最后输出RGB值 方案二:使用opencv库函数进行处理.(效果不错) 1.将图片颜色转为hsv, 2.使用cv2.inRange()函数进行背景颜色过滤 3.将过滤后的颜色进行二值化处理 4.进行形态学腐蚀膨胀,cv2.dilate() 5.统计白色区域面积 详解:方案一: 转载出处:www.jb51.net/article/62526.htm 项目实际需要

OpenCV3.0+Python3.6实现特定颜色的物体追踪

一.环境 win10.Python3.6.OpenCV3.x:编译器:pycharm5.0.3 二.实现目标 根据需要追踪的物体颜色,设定阈值,在视频中框选出需要追踪的物体. 三.实现步骤 1)根据需要追踪的物体颜色,设定颜色阈值,获取追踪物体的掩膜 代码:generate_threshold.py # -*- coding : utf-8 -*- # Author: Tom Yu import cv2 import numpy as np cap = cv2.VideoCapture(0)#获

python微信跳一跳系列之棋子定位颜色识别

python微信跳一跳,前言 这是python玩跳一跳系列博文中一篇,主要内容是用颜色识别的方法来进行跳跳小人的定位. 颜色识别 过观察,我们可以发现,尽管背景和棋子在不停的变化,但跳跳小人的形状和颜色基本保持不变,对于形状,我们在上一篇博文中已经采用模板匹配的方法来进行识别定位,效果非常好.这一篇博文就来对颜色识别进行验证. 基本思路 用HSV颜色空间对输入的图片进行处理,用某种指定的颜色进行蒙版mask处理进而得到二值化的黑白图像,膨胀和腐蚀后去除噪点,对轮廓区域进行计算,画出圆心和质心位置

python微信跳一跳系列之棋子定位像素遍历

前言 在前几篇博客中,分别就棋子的颜色识别.模板匹配等定位方式进行了介绍和实践,这一篇博客就来验证一下github中最热门的跳一跳外挂中采用的像素遍历的方法. 方法说明 像素遍历的实质依然是颜色识别. 在github中给出的方法中,采用像素遍历的方法是: 从高度的1/3处开始至高度的2/3处进行遍历: 首先间隔50像素进行搜索 当像素的颜色和每一行开始的像素颜色不同时,认为找到了最上面的棋盘位置,则返回上一个间隔处开始遍历(i-50): 对每一行的像素都进行遍历,当满足给定的颜色范围时,记录最下

python微信跳一跳系列之自动计算跳一跳距离

到现在为止,我们通过前面几篇博文的描述和分析,已经可以自动实现棋子.棋盘位置的准确判断,计算一下两个中心点之间的距离,并绘制在图形上,效果如下. 效果 图中的棋子定位采用HSV颜色识别,棋盘定位采用轮廓分割的方法获得,感兴趣的同学可以对其它的定位方法自行验证. 代码 # -*- coding: utf-8 -*- #VS2017+python3.6+opencv3.4 #2018.02.03 #作者:艾克思 import cv2 import numpy as np import math de

python微信跳一跳系列之色块轮廓定位棋盘

在前几篇博文中,我们分别采用颜色识别,模板匹配,像素遍历等方法实现了棋子和棋盘的定位,具体内容可以参见我的前面的文章内容,在这一篇中,我们来探索一种定位棋盘的新方法. 分析 经过观察,我们看到,无论什么情况下,棋盘和背景之间总是存在着非常明显的色彩对比,这当然是必须的,否则玩游戏的人都无法分辨棋子.棋盘.背景,这个游戏就不可能大火.显然,如果我们将每一幅画面进行色块分割,将彩色图转变为黑白二值图,就可以将背景和棋盘隔离出来,然后对黑白图中的白色轮廓进行分析,将其中位置最高(y值最小)的轮廓标记出

python微信跳一跳游戏辅助代码解析

这个代码实现的是   手动点击起点 和 终点  ,程序自动判断距离.触屏时间  完成跳跃 原理(摘自项目说明页面): 1. 将手机点击到"跳一跳"小程序界面: 2. 用Adb 工具获取当前手机截图,并用adb将截图pull上来: adb shell screencap -p /sdcard/1.png adb pull /sdcard/1.png . 3. 用matplot显示截图: 4. 用鼠标点击起始点和目标位置,计算像素距离: 5. 根据像素距离,计算按压时间: 6. 用Adb工

微信跳一跳python代码实现

本文实例为大家分享了python微信跳一跳的具体代码,供大家参考,具体内容如下 部分代码分享: wechat_jump.py from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation import math import time import os import cv2 import datet

微信跳一跳python辅助脚本(总结)

这段时间微信跳一跳这个游戏非常火爆,但是上分又非常的难,对于程序员来说第一个念头就是通过写一个辅助脚本外挂让上分变的容易,python现在比较火,我们一起来以python语言为基础总结以下各路神仙写的关于跳一跳的辅助脚本,大家在学习的时候主要理解他们的写法思路,对你学习python非常的有帮助. 1.微信跳一跳自动运行python脚本 注解:思路 核心:每次落稳之后截图,根据截图算出棋子的坐标和下一个块顶面的中点坐标, 根据两个点的距离乘以一个时间系数获得长按的时间 识别棋子:靠棋子的颜色来识别

python版微信跳一跳游戏辅助

本文实例为大家分享了微信跳一跳游戏辅助python代码,供大家参考,具体内容如下 import os import PIL import numpy import matplotlib matplotlib.use('TKAgg') import matplotlib.pyplot as plt import time from matplotlib.animation import FuncAnimation # 是否需要进行图片更新 need_update = True def get_sc

教你用 Python 实现微信跳一跳(Mac+iOS版)

这几天看网上好多微信跳一跳破解了,不过都是安卓的,无奈苹果不是开源也没办法.这个教程是 Mac + iOS , 要下xcode 要配置环境小白估计是没戏了,有iOS 开发经验的可以看看 .不过其实可以没事帮同事刷一下,让他们请吃个饭什么的,哈哈. 先发个战果 一.WebDriverAgent 首先去 https://github.com/facebook/WebDriverAgent 下一份代码 选择 WebDriverAgentRunner 用真机 然后 test 运行一下 , 看到IP地址就

小米5s微信跳一跳小程序python源码

本文实例为大家分享了微信跳一跳小程序python源码,供大家参考,具体内容如下 微信跳一跳小程序小米5s源码python,搭建环境后亲测可用. # coding: utf-8 import os import sys import subprocess import shutil import time import math from PIL import Image, ImageDraw import random import json import re # === 思路 === # 核