基于OpenCV与JVM实现矩阵处理图像

目录
  • 图片裁剪
  • 图片模糊处理
  • 子矩阵生成矩阵
  • 从图片子矩阵生成矩阵

submat(int rowStart, int rowEnd, int colStart, int colEnd) 函数的返回值是一个矩阵对象。内容是原图的子矩阵或子区域。

首先我们用imread来读取图片,然后输出矩阵对象本身的一些信息

import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Core;
import org.opencv.core.MatOfInt;
import org.opencv.imgcodecs.Imgcodecs;
import origami.Origami;

public class HelloCv {
    public static void main(String[] args) throws Exception {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        Mat mat = Imgcodecs.imread("./images/test.jpg",Imgcodecs.IMREAD_GRAYSCALE);
        System.out.println(mat);
    }
}

由于这个矩阵是原始图片,所以它的isSubmat是false。

现在我们使用submat函数的第一种形式,输入参数是每一行和每一列的起始和终止值。

图片裁剪

import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Core;
import org.opencv.core.MatOfInt;
import org.opencv.imgcodecs.Imgcodecs;
import origami.Origami;

public class HelloCv {
    public static void main(String[] args) throws Exception {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        Mat mat = Imgcodecs.imread("C:/HWKJ/ZRQ/OpenCv/matrixcv/images/test.jpg");
        System.out.println(mat);
        Mat submat = mat.submat(200, 240, 300, 350);
        System.out.println(submat);
    }
}

这里注意submat里的尺寸,尺寸根据原图的尺寸,超出原图的尺寸会报错,报错如下

然后我们输出裁剪的图片。

那么如何确认你想要截取图片的区域范围呢?也就是说怎么确定这四个参数的填写?我们以下图为例

截取后的图片

另外两种submat方式

Range​(int row,int column)

row:宽开始结束范围

column:高开始结束范围

Mat submat2 = mat.submat(new Range(20,300),new Range(100,500));
Imgcodecs.imwrite("./images/output2.png",submat2);

Rect​(int x, int y,int width, int height)

x:横坐标

y:纵坐标

width :宽

height:高

Mat submat3 = mat.submat(new Rect(0,200,100,100));
//submat3.setTo(new Scalar(255,0,0));//将图片绘制为蓝色
Imgcodecs.imwrite("./images/output3.png",submat3);

打开setTo如下:

Imgcodecs.imwrite("./images/blurtest.png",mat);

完整代码:

import org.opencv.core.CvType;
import org.opencv.core.Scalar;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.core.Range;
import org.opencv.core.Core;
import org.opencv.core.Size;
import org.opencv.core.MatOfInt;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import origami.Origami;

public class HelloCv {
    public static void main(String[] args) throws Exception {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        Mat mat = Imgcodecs.imread("C:/HWKJ/ZRQ/OpenCv/matrixcv/images/test.jpg");
        System.out.println(mat);
        Mat submat = mat.submat(200, 400, 200, 550);
        //System.out.println(submat);
        Imgcodecs.imwrite("./images/output.png",submat);
        Mat submat2 = mat.submat(new Range(20,300),new Range(100,500));
        Imgcodecs.imwrite("./images/output2.png",submat2);
        Mat submat3 = mat.submat(new Rect(0,200,400,200));
        submat3.setTo(new Scalar(255,0,0));
        Imgcodecs.imwrite("./images/output3.png",submat3);

        //Imgproc.blur(submat,submat,new Size(25.0,25.0));
        Imgcodecs.imwrite("./images/blurtest.png",mat);
    }
}

图片模糊处理

import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Core;
import org.opencv.core.Size;
import org.opencv.core.MatOfInt;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import origami.Origami;

public class HelloCv {
    public static void main(String[] args) throws Exception {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        Mat mat = Imgcodecs.imread("C:/HWKJ/ZRQ/OpenCv/matrixcv/images/test.jpg");
        System.out.println(mat);
        Mat submat = mat.submat(200, 400, 200, 550);
        //System.out.println(submat);
        //Imgcodecs.imwrite("./images/output.png",submat);
        Imgproc.blur(submat,submat,new Size(25.0,25.0));
        System.out.println("after:"+mat);
        Imgcodecs.imwrite("./images/blurtest.png",mat);
    }
}

子矩阵生成矩阵

setTo和copyTo是OpenCv中两个非常重要的函数。

setTo可以将一个矩阵中的所有像素设置为指定的颜色

copyTo可以将一个已有的矩阵复制到另一个矩阵之中。

第一个颜色值代表蓝色的深度,第二个值代表绿色的深度,最后一个值代表红色的深度。

//获取红绿蓝
Scalar Red = new Scalar(0,0,255);
Scalar Green = new Scalar(0,255,0);
Scalar Blue = new Scalar(255,0,0);

我们把这些颜色当作RGB的补充色。因此把其他通道设置为最大值255,主通道设置为0。蓝绿色是红色的补充色,所以红色值通道被设为0,而另外两个通道为255;

定义蓝绿色、品红色和黄色

Scalar cyan = new Scalar(255,255,0);
Scalar  magena= new Scalar(255,0,255);
Scalar yellow = new Scalar(0,255,255);

下面我们使用setTo将子矩阵设置为给定的Scalar颜色

    private void setColors(Mat mat ,boolean comp,int row){
      for (int i = 0; i <3 ; i++) {
          Mat sub = mat.submat(row*100,row*100+100,i*100,i*100+100);
          if(comp){
             //RGB
             if (i==0){
                 sub.setTo(Red);
             }if (i==1){
                  sub.setTo(Green);
              }if (i==2){
                  sub.setTo(Blue);
              }
          }else {
              //cmy
              if (i==0){
                  sub.setTo(cyan);
              }if (i==1){
                  sub.setTo(magena);
              }if (i==2){
                  sub.setTo(yellow);
              }
          }
      }
  }

接下来,我们创建一个包含三个颜色通道矩阵,并且填充它的第一行和第二行

完整代码:

import org.opencv.core.CvType;
import org.opencv.core.Scalar;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.core.Range;
import org.opencv.core.Core;
import org.opencv.core.Size;
import org.opencv.core.MatOfInt;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import origami.Origami;

public class HelloCv1 {
public static  Scalar Red = new Scalar(0,0,255);
public static   Scalar Green = new Scalar(0,255,0);
public static   Scalar Blue = new Scalar(255,0,0);
public static   Scalar cyan = new Scalar(255,255,0);
public static   Scalar  magena= new Scalar(255,0,255);
public static   Scalar yellow = new Scalar(0,255,255);
    public static void main(String[] args) throws Exception {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        Mat mat = new Mat(200,300,CvType.CV_8UC3);
        setColors(mat,false,1);
        setColors(mat,true,0);
        Imgcodecs.imwrite("./images/rgbcmy.png",mat);

    }

    static void setColors(Mat mat ,boolean comp,int row){
      for (int i = 0; i <3 ; i++) {
          Mat submat = mat.submat(row*100,row*100+100,i*100,i*100+100);
          if(comp){
             //RGB
             if (i==0){
               submat.setTo(Red);
             }if (i==1){
               submat.setTo(Green);
              }if (i==2){
                submat.setTo(Blue);
              }
          }else {
              //cmy
              if (i==0){
                submat.setTo(cyan);
              }if (i==1){
                submat.setTo(magena);
              }if (i==2){
                submat.setTo(yellow);
              }
          }
      }
  }
}

从图片子矩阵生成矩阵

首先创建一个大小为200x200的矩阵和子矩阵:一个是主矩阵的上部,一个是主矩阵的下部

int width = 200,height = 200;
Mat mat1 = new Mat(height,width,CvType.CV_8UC3);
Mat top = mat.submat(0,height/2,0,width);
Mat bottom = mat.submat(height/2,height,0,width);

然后加载一个图片以创建另一个小矩阵,并把它的大小调整为上部(或下部)的子矩阵大小。这里会引入Imgproc类中的resize函数。

完整代码:

import org.opencv.core.CvType;
import org.opencv.core.Scalar;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.core.Range;
import org.opencv.core.Core;
import org.opencv.core.Size;
import org.opencv.core.MatOfInt;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import origami.Origami;

public class HelloCv1 {
public static  Scalar Red = new Scalar(0,0,255);
public static   Scalar Green = new Scalar(0,255,0);
public static   Scalar Blue = new Scalar(255,0,0);
public static   Scalar cyan = new Scalar(255,255,0);
public static   Scalar  magena= new Scalar(255,0,255);
public static   Scalar yellow = new Scalar(0,255,255);
    public static void main(String[] args) throws Exception {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

        int width = 200,height = 300;
        Mat mat1 = new Mat(height,width,CvType.CV_8UC3);
        Mat top = mat1.submat(0,height/2,0,width);
        Mat bottom = mat1.submat(height/2,height,0,width);

        Mat small = Imgcodecs.imread("./images/test.jpg");
        Imgproc.resize(small,small,top.size());
        small.copyTo(top);
        small.copyTo(bottom);
        Imgcodecs.imwrite("./images/matofpictures.png",mat1);
    }

注意:设置大小的步骤很关键。复制能够成功,是因为小矩阵和子矩阵的大小是完全相同的,因此复制的时候没有出现任何问题

以上就是基于OpenCV与JVM实现矩阵处理图像的详细内容,更多关于OpenCV JVM矩阵处理图像的资料请关注我们其它相关文章!

时间: 2022-01-12

基于java的opencv开发过程详解

1.下载安装OpenCV https://opencv.org/releases/ 选择合适的平台安装包下载,然后双击安装,也就是解压的过程.这里主要记录windows下的环境搭建,opencv-342版本. 2.找到jar包 1)在-\opencv\build\java路径下能找到opencv-xx.jar 2)idea 新建工程,在Project Structure -> modules -> dependencies中添加jars or derectories 选择1)的jar包 3)运

java+opencv实现人脸识别功能

背景:最近需要用到人脸识别,但又不花钱使用现有的第三方人脸识别接口,为此使用opencv结合java进行人脸识别(ps:opencv是开源的,使用它来做人脸识别存在一定的误差,效果一般). 1.安装opencv 官网地址:https://opencv.org/ , 由于官网下载速度是真的慢 百度网盘: 链接: https://pan.baidu.com/s/1RpsP-I7v8pP2dkqALDw7FQ 提取码: pq7v 如果是官网下载,就无脑安装就行了,安装完毕后. 将图一的两个文件复制到图

基于OpenCv与JVM实现加载保存图像功能(JAVA 图像处理)

目录 加载图片 保存图片 加载图片 openCv有一个名imread的简单函数,用于从文件中读取图像 imread 函数位于Imgcodecs类的同名包中. 加载图片代码 import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.core.Core; import org.opencv.imgcodecs.Imgcodecs; import origami.Origami; public class

利用Java+OpenCV实现拍照功能

由于项目需要拍照,看了好多的资料不是C语言的就是python,开始用的JavaCv但是有好多问题,所以改成了OpenCv 只能硬着上了,查了好的网上的资料,终于找到了 依赖jar包:只有一个OpenCv的jar包,可以直接从官网上下载 下面上代码 import java.awt.Graphics; import java.awt.event.MouseAdapter; import java.awt.event.MouseEvent; import java.awt.image.Buffered

Java使用opencv识别二维码的完整步骤

目录 前言 OpenCV的安装 开发环境配置 识别二维码 总结 前言 OpenCV的全称是Open Source Computer Vision Library,它是一个跨平台的计算机视觉库,由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用.OpenCV本身由C++语言开发,但也具有各种其他语言的接口,并支持windows.linux.ios.android等各种操作系统.本文将介绍如何使用OpenCV与Java语言进行二维码识别. OpenCV的安装 目前Op

java使用电脑摄像头识别二维码

本文实例为大家分享了java使用电脑摄像头识别二维码的具体代码,供大家参考,具体内容如下 要想摄像头识别二维码,需要两个基本功能: 1.从摄像头获取图像,2.根据图片解析出二维码信息. 在上一篇java摄像头截图已经实现了摄像头截图,只要再加上zxing(或其它能从图片中解析二维码的组件),就能从图像中解析出二维码,实现代码如下: package com.pengo.capture; import javax.swing.JFrame; import java.awt.BorderLayout;

Android 二维码 生成和识别二维码 附源码下载

今天讲一下目前移动领域很常用的技术--二维码.现在大街小巷.各大网站都有二维码的踪迹,不管是IOS.Android.WP都有相关支持的软件.之前我就想了解二维码是如何工作,最近因为工作需要使用相关技术,所以做了初步了解.今天主要是讲解如何使用ZXing库,生成和识别二维码.这篇文章实用性为主,理论性不会讲解太多,有兴趣可以自己查看源码. 1.ZXing库介绍 这里简单介绍一下ZXing库.ZXing是一个开放源码的,用Java实现的多种格式的1D/2D条码图像处理库,它包含了联系到其他语言的端口

Java实现的生成二维码和解析二维码URL操作示例

本文实例讲述了Java实现的生成二维码和解析二维码URL操作.分享给大家供大家参考,具体如下: 二维码依赖jar包,zxing <!-- 二维码依赖 start --> <dependency> <groupId>com.google.zxing</groupId> <artifactId>javase</artifactId> <version>3.0.0</version> </dependency&

Java实现的生成二维码统计扫描次数并转发到某个地址功能详解

本文实例讲述了Java实现的生成二维码统计扫描次数并转发到某个地址功能.分享给大家供大家参考,具体如下: 需求: 近几天某个项目需要用户录入个自己的网址,然后系统需要根据用户的的网址生成二维码,然后用户可以拿着它给别人扫描,访问到他录入的网址,在这个过程中.我需要知道用户的二维码被扫描的次数,也就是后面根据其可以做一些扫描排名之类的. 思路: ① 先生成二维码,csdn已经有前辈写了,那么我就直接拿过来用了. ② 将用户的id,和用户录入的网址处理之后作为http get参数封装到二维码中,然后

jQuery实现微信长按识别二维码功能

最近一直在搞一个微信开发的项目,终于快要完工了,今天小编抽个时间记录下在项目开发过程中遇到jquery.qrcode.min.js生成二维码长按不识别的解决方法,希望对大家有所帮助! 1.引入JS库 <script src="jquery-1.8.3.js" type="text/javascript" charset="utf-8"></script> <script src="jquery.qrcode

Java利用Zxing生成二维码的简单实例

Zxing是Google提供的关于条码(一维码.二维码)的解析工具,提供了二维码的生成与解析的方法,现在我简单介绍一下使用Java利用Zxing生成与解析二维码 1.二维码的生成 1.1 将Zxing-core.jar 包加入到classpath下. 1.2 二维码的生成需要借助MatrixToImageWriter类,该类是由Google提供的,可以将该类拷贝到源码中,这里我将该类的源码贴上,可以直接使用. import com.google.zxing.common.BitMatrix; i

iOS模仿微信长按识别二维码的多种方式

参考:https://github.com/nglszs/BCQRcode 方式一: #import <UIKit/UIKit.h> @interface ViewController : UIViewController @end ************** #import "ViewController.h" @interface ViewController () @end @implementation ViewController - (void)viewDid

PHP识别二维码的方法(php-zbarcode安装与使用)

本文实例讲述了PHP识别二维码的方法.分享给大家供大家参考,具体如下: 说明:扩展需要依赖ImageMagick和zbar,安装前先安装这两个软件 1.安装ImageMagick(http://www.imagemagick.org/) yum install ImageMagick.x86_64 ImageMagick-devel.x86_64 2.安装zbar(http://sourceforge.net/projects/zbar/?source=directory) wget http:

.NET C#利用ZXing生成、识别二维码/条形码

一.首先下载 ZXing.Net 地址是:http://zxingnet.codeplex.com/releases/view/117068 然后将对应版本 .dll 拖入项目中,再引用之. 主要是用 BarcodeWriter.BarcodeReader. 二.生成二维码 .NET 平台的代码始终要简单些. QrCodeEncodingOptions options = new QrCodeEncodingOptions(); options.CharacterSet = "UTF-8&quo

Android WebView实现长按保存图片及长按识别二维码功能

先来简单说一下本文所要实现的功能:用户在浏览网页的时候,长按某一区域,识别如果是图片,则弹出弹框,出现保存图片的功能.同时识别图片是否是二维码,如果是则在弹框中追加识别二维码功能. 细节上:保存图片的弹框要显示在手指长按的位置:选择图片保存后,可以让用户直接去相册查看:选择识别二维码,判断是是不是网址,是的话可以让用户选择复制或访问,否则可以让用户选择复制或搜索. 然后再来看一下效果图: 保存图片 save.gif 识别包含普通文字的二维码: text.gif 识别包含网址的二维码: code.