java贪心算法初学感悟图解及示例分享

算法简介

1)贪心算法是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致是最好或者最优的算法

2)贪心算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果。

应用场景 --> 集合覆盖

public class GreedyAlgorithm {
	public static void main(String[] args) {
		// 创建广播电台,放入到Map
		HashMap<String, HashSet<String>> broadcasts = new HashMap<String, HashSet<String>>();
		// 将各个电台放入到broadcasts
		HashSet<String> hashSet1 = new HashSet<String>();
		hashSet1.add("北京");
		hashSet1.add("上海");
		hashSet1.add("天津");
		HashSet<String> hashSet2 = new HashSet<String>();
		hashSet2.add("广州");
		hashSet2.add("上海");
		hashSet2.add("天津");
		HashSet<String> hashSet3 = new HashSet<String>();
		hashSet3.add("成都");
		hashSet3.add("上海");
		hashSet3.add("杭州");
 		HashSet<String> hashSet4 = new HashSet<String>();
		hashSet4.add("上海");
		hashSet4.add("天津");
		HashSet<String> hashSet5 = new HashSet<String>();
		hashSet5.add("杭州");
		hashSet5.add("大连");
 		// 加入到map
		broadcasts.put("K1", hashSet1);
		broadcasts.put("K2", hashSet2);
		broadcasts.put("K3", hashSet3);
		broadcasts.put("K4", hashSet4);
		broadcasts.put("K5", hashSet5);
 		// allAreas,存放所有的地区
		HashSet<String> allAreas = new HashSet<String>();
		allAreas.add("北京");
		allAreas.add("上海");
		allAreas.add("天津");
		allAreas.add("广州");
		allAreas.add("深圳");
		allAreas.add("成都");
		allAreas.add("杭州");
		allAreas.add("大连");
		// 创建ArrayList,存放选择的电台集合
		ArrayList<String> selects = new ArrayList<String>();
		// 定义一个临时的集合,在遍历的过程中,存放遍历过程中的电台覆盖的地区和当前还没有覆盖的地区的交集
		HashSet<String> tempSet = new HashSet<String>();
		// 定义一个maxKey,保存在一次遍历过程中,能够覆盖最多未覆盖的地区对应的电台的key
		// 如果maxKey不为null,则会加入到selects
		String maxKey = null;
		while (allAreas.size() != 0) {// 如果allAreas不为0,则表示还没有覆盖到所有的地区
			// 每进行一次while,需要将maxKey置空
			maxKey = null;
			// 遍历broadcasts,取出对应key
			for (String key : broadcasts.keySet()) {
				// 每进行一次for
				tempSet.clear();
				// 当前这个key能够覆盖的地区
				HashSet<String> areas = broadcasts.get(key);
				tempSet.addAll(areas);
				// 求出tempSet 和 allAreas集合的交集,交集会赋给tempSet
				tempSet.retainAll(allAreas);// retainAll方法的作用就是求交集
				// 如果当前这个集合包含的未覆盖地区的数量,比maxKey指向的集合地区还多
				// 就需要重置maxKey
				// tempSet.size() > broadcasts.get(maxKey).size()) 体现出贪心算法的特点,每次都选择最优的
				if (tempSet.size() > 0 && (maxKey == null || tempSet.size() > broadcasts.get(maxKey).size())) {
					maxKey = key;
				}
			}
			// maxKey != null,就应该将maxKey加入selects
			if (maxKey != null) {
				selects.add(maxKey);
				// 将maxKey指向的广播电台覆盖的地区,从allAreas去掉
				allAreas.removeAll(broadcasts.get(maxKey));
			}
		}
		System.out.println("得到的选择结果是" + selects);
	}
}

以上就是java贪心算法初学感悟图解及示例分享的详细内容,更多关于java贪心算法的资料请关注我们其它相关文章!

时间: 2021-11-23

java 中模式匹配算法-KMP算法实例详解

java 中模式匹配算法-KMP算法实例详解 朴素模式匹配算法的最大问题就是太低效了.于是三位前辈发表了一种KMP算法,其中三个字母分别是这三个人名的首字母大写. 简单的说,KMP算法的对于主串的当前位置不回溯.也就是说,如果主串某次比较时,当前下标为i,i之前的字符和子串对应的字符匹配,那么不要再像朴素算法那样将主串的下标回溯,比如主串为"abcababcabcabcabcabc",子串为"abcabx".第一次匹配的时候,主串1,2,3,4,5字符都和子串相应的

java图论弗洛伊德和迪杰斯特拉算法解决最短路径问题

目录 弗洛伊德算法 算法介绍 算法图解分析   迪杰斯特拉算法 算法介绍 算法过程  弗洛伊德算法 算法介绍 算法图解分析     第一轮循环中,以A(下标为:0)作为中间顶点 [即把作为中间顶点的所有情况都进行遍历,就会得到更新距离表和前驱关系],距离表和前驱关系更新为: 弗洛伊德算法和迪杰斯特拉算法的最大区别是: 弗洛伊德算法是从各个顶点出发,求最短路径: 迪杰斯特拉算法是从某个顶点开始,求最短路径. /** * 弗洛伊德算法 * 容易理解,容易实现 */ public void floyd

java图论普利姆及克鲁斯卡算法解决最小生成树问题详解

目录 什么是最小生成树? 普利姆算法  算法介绍 应用 --> 修路问题  图解分析  克鲁斯卡尔算法 算法介绍 应用场景 -- 公交站问题  算法图解   算法分析  如何判断是否构成回路 什么是最小生成树? 最小生成树(Minimum Cost Spanning Tree),简称MST. 最小生成树要求图是连通图.连通图指图中任意两个顶点都有路径相通,通常指无向图.理论上如果图是有向.多重边的,也能求最小生成树,只是不太常见. 普利姆算法  算法介绍 应用 --> 修路问题  图解分析 

java暴力匹配及KMP算法解决字符串匹配问题示例详解

目录 要解决的问题? 一.暴力匹配算法 一个图例介绍KMP算法 二.KMP算法 算法介绍 一个图例介绍KMP算法   代码实现 要解决的问题? 一.暴力匹配算法 一个图例介绍KMP算法 String str1 = "BBC ABCDAB ABCDABCDABDE"; String str2 = "ABCDABD";     1. S[0]为B,P[0]为A,不匹配,执行第②条指令:"如果失配(即S[i]! = P[j]),令i = i - (j - 1),

二叉树递归迭代及morris层序前中后序遍历详解

目录 分析二叉树的前序,中序,后序的遍历步骤 1.层序遍历 方法一:广度优先搜索 方法二:递归 2.前序遍历 3.中序遍历 4.后序遍历 递归解法 前序遍历--递归 迭代解法 前序遍历--迭代 核心思想: 三种迭代解法的总结: Morris遍历 morris--前序遍历 morris--中序遍历 morris--后序遍历: 分析二叉树的前序,中序,后序的遍历步骤 1.层序遍历 方法一:广度优先搜索   (以下解释来自leetcode官方题解) 我们可以用广度优先搜索解决这个问题. 我们可以想到最

java数据结构图论霍夫曼树及其编码示例详解

目录 霍夫曼树 一.基本介绍 二.霍夫曼树几个重要概念和举例说明  构成霍夫曼树的步骤 霍夫曼编码 一.基本介绍 二.原理剖析 注意: 霍夫曼编码压缩文件注意事项 霍夫曼树 一.基本介绍 二.霍夫曼树几个重要概念和举例说明  构成霍夫曼树的步骤 举例:以arr = {1  3  6  7  8   13   29}  public class HuffmanTree { public static void main(String[] args) { int[] arr = { 13, 7, 8

Java数据结构彻底理解关于KMP算法

大家好,前面的有一篇文章讲了子序列和全排列问题,今天我们再来看一个比较有难度的问题.那就是大名鼎鼎的KMP算法. 本期文章源码:GitHub源码 简介 KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt提出的,因此人们称它为克努特-莫里斯-普拉特操作(简称KMP算法).KMP算法的核心是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的.具体实现就是通过一个next()函数实现,函数本身包含了模式串的局部匹配信息.KMP算法

Java数据结构实现折半查找的算法过程解析

折半查找技术,也就是二分查找,通常称为二分法查找.它的前期是线性表中的记录必须是关键码有序(通常从大到小有序),线性表必须采用顺序存储.折半查找的基本思想是: 取中间记录作为比较对象,若给定值与中间记录的关键字,则在中间记录的关键字相等,则查找成功:若给定值小于中间记录的做半,去继续查找:若给定值大于中间记录的关键字,则在中间记录的右半区继续查找.不断重复上述过程,直到查找成功,或所有查找区域无记录,查找失败为止. 在文本排重中需要用到折半查找,需要查找一个数组中是否存在某个数. 算法维护着一个

KMP算法最浅显理解(小白教程)

说明 KMP算法看懂了觉得特别简单,思路很简单,看不懂之前,查各种资料,看的稀里糊涂,即使网上最简单的解释,依然看的稀里糊涂. 我花了半天时间,争取用最短的篇幅大致搞明白这玩意到底是啥. 这里不扯概念,只讲算法过程和代码理解: KMP算法求解什么类型问题 字符串匹配.给你两个字符串,寻找其中一个字符串是否包含另一个字符串,如果包含,返回包含的起始位置. 如下面两个字符串: char *str = "bacbababadababacambabacaddababacasdsd"; char

JAVA实现KMP算法理论和示例代码

一.理论准备KMP算法为什么比传统的字符串匹配算法快?KMP算法是通过分析模式串,预先计算每个位置发生不匹配的时候,可以省去重新匹配的的字符个数.整理出来发到一个next数组, 然后进行比较,这样可以避免字串的回溯,模式串中部分结果还可以复用,减少了循环次数,提高匹配效率.通俗的说就是KMP算法主要利用模式串某些字符与模式串开头位置的字符一样避免这些位置的重复比较的.例如 主串: abcabcabcabed ,模式串:abcabed.当比较到模式串'e'字符时不同的时候完全没有必要从模式串开始位

java数据结构与算法之插入算法实现数值排序示例

本文实例讲述了java数据结构与算法之插入算法实现数值排序.分享给大家供大家参考,具体如下: 写在这里做个纪念,关键是要理解插入点,在插入点,初始的in和out都在这个插入点,然后通过in自减对数组进行重新排序 public static void insertSort(){ for(int out=1; out<a.length; out++){ int temp = a[out]; int in = out; while(in>0&& a[in-1]>temp){ a

java数据结构与算法之双向循环队列的数组实现方法

本文实例讲述了java数据结构与算法之双向循环队列的数组实现方法.分享给大家供大家参考,具体如下: 需要说明的是此算法我并没有测试过,这里给出的相当于伪代码的算法思想,所以只能用来作为参考! package source; public class Deque { private int maxSize; private int left; private int right; private int nItems; private long[] myDeque; //constructor p

java数据结构与算法之快速排序详解

本文实例讲述了java数据结构与算法之快速排序.分享给大家供大家参考,具体如下: 交换类排序的另一个方法,即快速排序. 快速排序:改变了冒泡排序中一次交换仅能消除一个逆序的局限性,是冒泡排序的一种改进:实现了一次交换可消除多个逆序.通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 步骤: 1.从数列中挑出一个元素,称为 "基准"(piv

java数据结构排序算法之树形选择排序详解

本文实例讲述了java数据结构排序算法之树形选择排序.分享给大家供大家参考,具体如下: 这里我们就来说说选择类排序之一的排序:树形选择排序 在简单选择排序中,每次的比较都没有用到上次比较的结果,所以比较操作的时间复杂度是O(N^2),想要降低比较的次数,则需要把比较过程中的大小关系保存下来.树形选择排序是对简单选择排序的改进. 树形选择排序:又称锦标赛排序(Tournament Sort),是一种按照锦标赛的思想进行选择排序的方法.首先对n个记录的关键字进行两两比较,然后在n/2个较小者之间再进

Java数据结构与算法之栈(Stack)实现详解

本篇是java数据结构与算法的第2篇,从本篇开始我们将来了解栈的设计与实现,以下是本篇的相关知识点: 栈的抽象数据类型顺序栈的设计与实现链式栈的设计与实现栈的应用 栈的抽象数据类型   栈是一种用于存储数据的简单数据结构,有点类似链表或者顺序表(统称线性表),栈与线性表的最大区别是数据的存取的操作,我们可以这样认为栈(Stack)是一种特殊的线性表,其插入和删除操作只允许在线性表的一端进行,一般而言,把允许操作的一端称为栈顶(Top),不可操作的一端称为栈底(Bottom),同时把插入元素的操作

java数据结构与算法之插入排序详解

本文实例讲述了java数据结构与算法之插入排序.分享给大家供大家参考,具体如下: 复习之余,就将数据结构中关于排序的这块知识点整理了一下,写下来是想与更多的人分享,最关键的是做一备份,为方便以后查阅. 排序 1.概念: 有n个记录的序列{R1,R2,.......,Rn}(此处注意:1,2,n 是下表序列,以下是相同的作用),其相应关键字的序列是{K1,K2,.........,Kn}.通过排序,要求找出当前下标序列1,2,......,n的一种排列p1,p2,........pn,使得相应关键