C++对象内存分布详解(包括字节对齐和虚函数表)

1、C++对象的内存分布和虚函数表:

C++对象的内存分布和虚函数表注意,对象中保存的是虚函数表指针,而不是虚函数表,虚函数表在编译阶段就已经生成,同类的不同对象中的虚函数指针指向同一个虚函数表,不同类对象的虚函数指针指向不同虚函数表。

2、何时进行动态绑定:

(1)每个类对象在被构造时不用去关心是否有其他类从自己派生,也不需要关心自己是否从其他类派生,只要按照一个统一的流程:在自身的构造函数执行之前把自己所属类(即当前构造函数所属的类)的虚函数表的地址绑定到当前对象上(一般是保存在对象内存空间中的前4个字节)。因为对象的构造是从最基类部分(比如A<-B<-C,A是最基类,C是最派生类)开始构造,一层一层往外构造中间类(B),最后构造的是最派生类(C),所以最终对象上绑定的就自然而然就是最派生类的虚函数表。

(2)析构函数的调用跟构造函数的调用顺序是相反的,它从最派生类的析构函数开始的。也就是说当基类的析构函数执行时,派生类的析构函数已经执行过,派生类中的成员数据被认为已经无效(包括派生类对象中的虚表指针)。假设基类中虚函数调用能调用得到派生类的虚函数,那么派生类的虚函数将访问一些已经“无效”的数据,所带来的问题和访问一些未初始化的数据一样。而同样,我们可以认为在析构的过程中,虚函数表也是在不断变化的,不断解绑定。

因此,在基类构造函数或者析构函数中调用虚函数,并不会绑定到派生类的实现上,因为在这两个函数执行时虚函数表指针指向的是基类的虚函数表。

3、C++中类的大小:

由 1 可知,C++对象中只保存非静态数据成员,成员函数和静态数据成员是存储在静态数据区的。

字节对齐(默认):

1、VC规定各成员变量存放的起始地址相对于结构的起始地址的偏移量必须为该变量的类型所占用的字节数的倍数。

2、VC为了确保结构的大小为结构的字节边界数(即该结构中占用最大空间的类型所占用的字节数)的倍数,所以在为最后一个成员变量申请空间后,还会根据需要自动填充空缺的字节。

3、如果对齐字节数(#pragma pack(n)),那么

(1)各成员变量存放的起始地址相对于结构的起始地址的偏移量必须为该变量的类型所占用的字节数和n的较小值的倍数。

(2)结构的大小为结构中占用最大空间的类型所占用的字节数和n的较小值的倍数。

class A {
 double d;
 static int i;
 void f() { std::cout << "A::f" << std::endl; }
}; // 8 byte,只有double数据成员占8字节,成员函数和静态数据成员不在对象中,而是在静态数据区

class B {
 int i; //4
 double j;//8
 char k; //
}; // 24 byte,考虑字节对齐, 4 + 4 + 8 + 1 + 7, 蓝色的4是为了满足条件1,黑色的7是为了满足条件2。如果指定4字节对齐,4 + 8 + 1 + 3

class C {
 virtual void f() { std::cout << "C::f" << std::endl; }
}; // 4 byte,虚函数表指针占4个字节

class D {
};// 1 byte,没有成员变量的结构或类的大小为1,因为必须保证结构或类的每一 个实例在内存中都有唯一的地址

注:

1、如果有成员对象,直接把成员对象展开到外部对象中,然后按照字节对齐的规律求大小。

2、虚继承的内存分布为:虚类指针-》派生类成员数据-》基类成员数据。其对齐方案是:首先把派生类所有成员当成一个嵌套结构体形式,位于最下面的基类的数据成员要保证自己对齐(首地址整除自己的字节数),但是不用在最下面添加字节保证整体是边界长度的整数倍(因为基类成员共享,不能把派生类当成一个整体)。

3、如果对象中有数组,可以把数组展开到对象中,然后按照字节对齐的规律求大小。

4、为什么要进行字节对齐

计算机组成原理教导我们这样有助于加快计算机的取数速度,否则就得多花指令周期了。为此,编译器默认会对结构体进行处理(实际上其它地方的数据变量也是如此),让宽度为2的基本数据类型(short等)都位于能被2整除的地址上,让宽度为4的基本数据类型(int等)都位于能被4整除的地址上,以此类推。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数据。

备注:visual studio 2010是按照默认方式进行字节对齐的 32位gcc按照4字节最齐

以上就是小编为大家带来的C++对象内存分布详解(包括字节对齐和虚函数表)全部内容了,希望大家多多支持我们~

时间: 2016-12-24

C++中的内存对齐实例详解

C++中的内存对齐实例详解 内存对齐 在我们的程序中,数据结构还有变量等等都需要占有内存,在很多系统中,它都要求内存分配的时候要对齐,这样做的好处就是可以提高访问内存的速度. 我们还是先来看一段简单的程序: 程序一 #include <iostream> using namespace std; struct X1 { int i;//4个字节 char c1;//1个字节 char c2;//1个字节 }; struct X2 { char c1;//1个字节 int i;//4个字节 ch

C语言、C++内存对齐问题详解

这也可以? 复制代码 代码如下: #include <iostream> using namespace std;   struct Test_A {      char a;      char b;      int c; };   struct Test_B {      char a;      int c;      char b; };   struct Test_C {      int c;      char a;      char b; };   int main() {

C++动态分配和撤销内存以及结构体类型作为函数参数

C++动态分配内存(new)和撤销内存(delete) 在软件开发过程中,常常需要动态地分配和撤销内存空间,例如对动态链表中结点的插入与删除.在C语言中是利用库函数malloc和free来分配和撤销内存空间的.C++提供了较简便而功能较强的运算符new和delete来取代malloc和free函数. 注意: new和delete是运算符,不是函数,因此执行效率高. 虽然为了与C语言兼容,C++仍保留malloc和free函数,但建议用户不用malloc和free函数,而用new和delete运算

关于C++内存中字节对齐问题的详细介绍

一.什么是字节对齐计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐. 二.对齐的作用和原因:1.平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的:某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常.各个硬件平台对存储空间的处理上有很大的不同.一些平台对某些特定类型

C++面试题之结构体内存对齐计算问题总结大全

前言 本文给大家介绍的是关于C++结构体内存对齐计算的相关内容,内存对齐计算可谓是笔试题的必考题,但是如何按照计算原则算出正确答案一开始也不是很容易的事,所以专门通过例子来复习下关于结构体内存对齐的计算问题.话不多说,来一起看看详细介绍吧. 编译环境:vs2015 对齐原则: 原则1:数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个

C/C++语言中结构体的内存分配小例子

当未用 #pragma 指令指定编译器的对齐位数时,结构体按最长宽度的数据成员的宽度对齐:当使用了 #pragma 指令指定编译器的对齐位数时,结构体按最长宽度的数据成员的宽度和 #pragma 指令指定的位数中的较小值对齐. #pragma 指令格式如下所示:#pragma pack(4)     // 或者 #pragma pack(push, 4) 举例如下:(机器字长为 32 位)    struct    {        char a;    }test;    printf("%d

深入理解c/c++ 内存对齐

内存对齐,memory alignment.为了提高程序的性能,数据结构(尤其是栈)应该尽可能地在自然边界上对齐.原因在于,为了访问未对齐的内存,处理器需要作两次内存访问:然而,对齐的内存访问仅需要一次访问.内存对齐一般讲就是cpu access memory的效率(提高运行速度)和准确性(在一些条件下,如果没有对齐会导致数据不同步现象).依赖cpu,平台和编译器的不同.一些cpu要求较高(这句话说的不准确,但是确实依赖cpu的不同),而有些平台已经优化内存对齐问题,不同编译器的对齐模数不同.总

深入理解C语言内存对齐

一.内存对齐的初步讲解 内存对齐可以用一句话来概括: "数据项只能存储在地址是数据项大小的整数倍的内存位置上" 例如int类型占用4个字节,地址只能在0,4,8等位置上. 例1: 复制代码 代码如下: #include <stdio.h>struct xx{        char b;        int a;        int c;        char d;}; int main(){        struct xx bb;        printf(&q

浅析内存对齐与ANSI C中struct型数据的内存布局

这些问题或许对不少朋友来说还有点模糊,那么本文就试着探究它们背后的秘密. 首先,至少有一点可以肯定,那就是ANSI C保证结构体中各字段在内存中出现的位置是随它们的声明顺序依次递增的,并且第一个字段的首地址等于整个结构体实例的首地址.比如有这样一个结构体: 复制代码 代码如下: struct vector{int x,y,z;} s;  int *p,*q,*r;  struct vector *ps;  p = &s.x;  q = &s.y;  r = &s.z;  ps =

深入内存对齐的详解

1.引子 在结构中,编译器为结构的每个成员按其自身的自然对界(alignment)条件分配空间.各个成员按照它们被声明的顺序在内存中顺序存储,第一个成员的地址和整个结构的地址相同. 例如,下面的结构各成员空间分配情况(假设对齐方式大于2字节,即#pragma pack(n), n = 2,4,8...下文将讨论#pragmapack()): 复制代码 代码如下: struct test {     char x1;     short x2;     float x3;     char x4;

解析内存对齐 Data alignment: Straighten up and fly right的详解

为了速度和正确性,请对齐你的数据. 概述:对于所有直接操作内存的程序员来说,数据对齐都是很重要的问题.数据对齐对你的程序的表现甚至能否正常运行都会产生影响.就像本文章阐述的一样,理解了对齐的本质还能够解释一些处理器的"奇怪的"行为. 内存存取粒度 程序员通常倾向于认为内存就像一个字节数组.在C及其衍生语言中,char * 用来指代"一块内存",甚至在JAVA中也有byte[]类型来指代物理内存. Figure 1. 程序员是如何看内存的 然而,你的处理器并不是按字节

VC++中内存对齐实例教程

内存对其是VC++程序设计中一个非常重要的技巧,本文即以实例讲述VC++实现内存对其的方法.具体分析如下: 一.概述 我们经常看到求 sizeof(A) 的值的问题,其中A是一个结构体,类,或者联合体. 为了优化CPU访问和优化内存,减少内存碎片,编译器对内存对齐制定了一些规则.但是,不同的编译器可能有不同的实现,本文只针对VC++编译器,这里使用的IDE是VS2012. #pragma pack()是一个预处理,表示内存对齐.布局控制#pragma,为编译程序提供非常规的控制流信息. 二.结构

C语言内存对齐实例详解

本文详细讲述了C语言程序设计中内存对其的概念与用法.分享给大家供大家参考之用.具体如下: 一.字节对齐基本概念 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐. 对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同.一些平台对某些特定类型的数据只能从某些特定地址开始存取.比如有些架构的C

iOS通过逆向理解Block的内存模型

前言 正常情况下,通过分析界面以及 class-dump 出来头文件就能对某个功能的实现猜个八九不离十.但是 Block 这种特殊的类型在头文件中是看不出它的声明的,一些有 Block 回调的方法名 dump 出来是类似这样的: - (void)FM_GetSubscribeList:(long long)arg1 pageSize:(long long)arg2 callBack:(CDUnknownBlockType)arg3; 因为这种回调看不到它的方法签名,我们无法知道这个 Block