python中itertools模块zip_longest函数详解

最近在看流畅的python,在看第14章节的itertools模块,对其itertools中的相关函数实现的逻辑的实现

其中在zip_longest(it_obj1, ..., it_objN, fillvalue=None)时,其函数实现的功能和内置zip函数大致相同(实现一一对应),

不过内置的zip函数是已元素最少对象为基准,而zip_longest函数是已元素最多对象为基准,使用fillvalue的值来填充

以下是自己总结此函数的大致实现方法,和官方方法不同:

思路大致如此: 找出元素个数最多 ==>算出元素个数差值==>填充差值个元素到各个对象

def zip_longest(*it, **kwargs):
  its = {k: len(k) for k in it}   # 这里我是用字典把参数对象和参数的元素个数结果作为一个字典
  max_num = max(its.values())    # 确定迭代对象元素最大值
  result = []            #
  fillvalue = kwargs.get('fillvalue', None) # 元素较少的填充值
  for x in range(max_num):     # 已最大次为基准循环
    result = []
    for it in its:        # 循环所有迭代对象,以便进行填充数据
      element = list(it)    # 将
      if len(it) < max_num:   # 如果迭代对象的元素个数比最大值小,则要填充数据
        for i in range(max_num - len(it)): # 此为要填充数据的个数
          element.append(fillvalue)    # 填充操作,完成后所有的迭代对象的元素个数都为一致
      result.append(element[x])        # 生成一一对应结果,存放到list中
    yield tuple(result)             # 将结果输出

测试其结果:

res = zip_longest('abc', '12')
for x in res:
  print(x)

结果为:

('a', '1')
('b', '2')
('c', None)

时间: 2018-06-09

python进阶教程之循环相关函数range、enumerate、zip

在"循环"一节,我们已经讨论了Python基本的循环语法.这一节,我们将接触更加灵活的循环方式. range() 在Python中,for循环后的in跟随一个序列的话,循环每次使用的序列元素,而不是序列的下标. 之前我们已经使用过range()来控制for循环.现在,我们继续开发range的功能,以实现下标对循环的控制: 复制代码 代码如下: S = 'abcdefghijk' for i in range(0,len(S),2):     print S[i] 在该例子中,我们利用l

python中lambda函数 list comprehension 和 zip函数使用指南

lambda 函数 Python 支持一种有趣的语法,它允许你快速定义单行的最小函数.这些叫做 lambda 的函数,是从 Lisp 借用来的,可以用在任何需要函数的地方. def f(x): return x*2,用lambda函数来替换可以写成:g = lambda x: x*2`g(3)结果是6.(lambda x: x*2)(3)`也是同样的效果. 这是一个 lambda 函数,完成同上面普通函数相同的事情.注意这里的简短的语法:在参数列表周围没有括号,而且忽略了 return 关键字

Python中zip()函数的简单用法举例

定义:zip([iterable, ...]) zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表).若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同.利用*号操作符,可以将list unzip(解压),看下面的例子就明白了: >>> a = [1,2,3] >>> b = [4,5,6] >>> c = [4,5

Python用zip函数同时遍历多个迭代器示例详解

前言 本文主要介绍的是Python如何使用zip函数同时遍历多个迭代器,文中的版本为Python3,zip函数是Python内置的函数.下面话不多说,来看详细的内容. 应用举例 >>> list1 = ['a', 'b', 'c', 'd'] >>> list2 = ['apple', 'boy', 'cat', 'dog'] >>> for x, y in zip(list1, list2): print(x, 'is', y) # 输出 a is

Python中zip()函数用法实例教程

本文实例讲述了Python中zip()函数的定义及用法,相信对于Python初学者有一定的借鉴价值.详情如下: 一.定义: zip([iterable, ...]) zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表).若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同.利用*号操作符,可以将list unzip(解压). 二.用法示例: 读者看看下面的例子,

Python zip()函数用法实例分析

本文实例讲述了Python zip()函数用法.分享给大家供大家参考,具体如下: 这里介绍python中zip()函数的使用: >>> help(zip) Help on built-in function zip in module __builtin__: zip(...) zip(seq1 [, seq2 [...]]) -> [(seq1[0], seq2[0] ...), (...)] Return a list of tuples, where each tuple c

Python中的zip函数使用示例

zip函数接受任意多个(包括0个和1个)序列作为参数,返回一个tuple列表.具体意思不好用文字来表述,直接看示例: 1.示例1: 复制代码 代码如下: x = [1, 2, 3] y = [4, 5, 6] z = [7, 8, 9] xyz = zip(x, y, z) print xyz 运行的结果是: [(1, 4, 7), (2, 5, 8), (3, 6, 9)] 从这个结果可以看出zip函数的基本运作方式. 2.示例2: 复制代码 代码如下: x = [1, 2, 3] y = [

python中使用zip函数出现&lt;zip object at 0x02A9E418&gt;错误的原因

python中zip函数返回一个以元组为元素的列表,其中第 i 个元组包含每个参数序列的第 i 个元素.返回的列表长度被截断为最短的参数序列的长度.只有一个序列参数时,它返回一个1元组的列表.没有参数时,它返回一个空的列表.概括起来一句话: zip函数返回的是一个列表,但是列表里面的元素是由一个个元组构成的.. 在Python中使用zip函数,出现<zip object at 0x02A9E418>错误的原因是,你是用的是python2点多的版本,python3.0对python做了改动 zi

python3中zip()函数使用详解

zip在python3中,处于优化内存的考虑,只能访问一次!!!(python2中可以访问多次),童鞋们一定要注意, * coding: utf-8 * zip()函数的定义:从参数中的多个迭代器取元素组合成一个新的迭代器: 返回: 返回一个zip对象,其内部元素为元组:可以转化为列表或元组: 传入参数: 元组.列表.字典等迭代器. 当zip()函数中只有一个参数时,zip(iterable)从iterable中依次取一个元组,组成一个元组. 在python 3.0中有个大坑,zip中的数据只能

浅谈Python中的zip()与*zip()函数详解

前言 1.实验环境: Python 3.6: 2.示例代码地址:下载示例: 3.本文中元素是指列表.元组.字典等集合类数据类型中的下一级项目(可能是单个元素或嵌套列表). zip(*iterables)函数详解 zip()函数的定义 从参数中的多个迭代器取元素组合成一个新的迭代器: 返回: 返回一个zip对象,其内部元素为元组:可以转化为列表或元组: 传入参数:元组.列表.字典等迭代器. zip()函数的用法 当zip()函数中只有一个参数时 zip(iterable)从iterable中依次取

浅谈python中copy和deepcopy中的区别

在下是个编程爱好者,最近将魔爪伸向了Python编程.....遇到copy和deepcopy感到很困惑,现在针对这两个方法进行区分,一种是浅复制(copy),一种是深度复制(deepcopy). 首先说一下deepcopy,所谓的深度复制,在这里我理解的是完全复制然后变成一个新的对象,复制的对象和被复制的对象没有任何关系,彼此之间无论怎么改变都相互不影响. 然后说一下copy,在这里我分为两类来说,一种是字典数据类型的copy函数,一种是copy包的copy函数. 一.字典数据类型的copy函数

浅谈python中列表、字符串、字典的常用操作

列表操作如此下: a = ["haha","xixi","baba"] 增:a.append[gg] a.insert[1,gg] 在下标为1的地方,新增 gg 删:a.remove(haha) 删除列表中从左往右,第一个匹配到的 haha del a.[0] 删除下标为0 对应的值 a.pop(0) 括号里不写内容,默认删除最后一个,写了,就删除对应下标的内容 改:a.[0] = "gg" 查:a[0] a.index(&q

浅谈Python中函数的参数传递

1.普通的参数传递 >>> def add(a,b): return a+b >>> print add(1,2) 3 >>> print add('abc','123') abc123 2.参数个数可选,参数有默认值的传递 >>> def myjoin(string,sep='_'): return sep.join(string) >>> myjoin('Test') 'T_e_s_t' >>>

浅谈python中的面向对象和类的基本语法

当我发现要写python的面向对象的时候,我是踌躇满面,坐立不安呀.我一直在想:这个坑应该怎么爬?因为python中关于面向对象的内容很多,如果要讲透,最好是用面向对象的思想重新学一遍前面的内容.这个坑是如此之大,犹豫再三,还是只捡一下重要的内容来讲吧,不足的内容只能靠大家自己去补充了. 惯例声明一下,我使用的版本是 python2.7,版本之间可能存在差异. 好,在开讲之前,我们先思考一个问题,看代码: 为什么我只创建是为 a 赋值,就可以使用一些我没写过的方法? 可能会有小伙伴说:因为 a

浅谈python中的getattr函数 hasattr函数

hasattr(object, name) 作用:判断对象object是否包含名为name的特性(hasattr是通过调用getattr(ojbect, name)是否抛出异常来实现的). 示例: >>> hasattr(list, 'append') True >>> hasattr(list, 'add') False getattr(object,name,default): 作用:返回object的名称为name的属性的属性值,如果属性name存在,则直接返回其

浅谈python中的数字类型与处理工具

python中的数字类型工具 python中为更高级的工作提供很多高级数字编程支持和对象,其中数字类型的完整工具包括: 1.整数与浮点型, 2.复数, 3.固定精度十进制数, 4.有理分数, 5.集合, 6.布尔类型 7.无穷的整数精度 8.各种数字内置函数及模块. 基本数字类型 python中提供了两种基本类型:整数(正整数金额负整数)和浮点数(注:带有小数部分的数字),其中python中我们可以使用多种进制的整数.并且整数可以用有无穷精度. 整数的表现形式以十进制数字字符串写法出现,浮点数带

浅谈python中scipy.misc.logsumexp函数的运用场景

scipy.misc.logsumexp函数的输入参数有(a, axis=None, b=None, keepdims=False, return_sign=False),具体配置可参见这里,返回的值是np.log(np.sum(np.exp(a))). 这里需要强调的是使用该函数的场景: 一般来说,该函数主要用于非常小的数值的运算(比如蒙特卡洛取样样本).在这种情况下,将数据保持log处理是必须的.所以这时你如果想将数组中的数据累加求和就需要这样计算log(sum(exp(a))),但这样做就

浅谈python中set使用

浅谈python中set使用 In [2]: a = set() # 常用操作1 In [3]: a Out[3]: set() In [4]: type(a) Out[4]: set In [5]: b = set([1, 3]) In [6]: b Out[6]: {1, 3} In [7]: type(b) Out[7]: set In [8]: b.update(2) ------------------------------------------------------------

浅谈python中的变量默认是什么类型

1.type(变量名),输出的结果就是变量的类型: 例如 >>> type(6) <type 'int'> 2.在Python里面变量在声明时,不需要指定变量的类型,变量的类型是动态指定的:>>> x=5 >>> type(x) <type 'int'> >>> x="wang" >>> type(x) <type 'str'> 3.也就是说变量的类型,根据给出

浅谈Python中的可变对象和不可变对象

什么是可变/不可变对象 不可变对象,该对象所指向的内存中的值不能被改变.当改变某个变量时候,由于其所指的值不能被改变,相当于把原来的值复制一份后再改变,这会开辟一个新的地址,变量再指向这个新的地址. 可变对象,该对象所指向的内存中的值可以被改变.变量(准确的说是引用)改变后,实际上是其所指的值直接发生改变,并没有发生复制行为,也没有开辟新的出地址,通俗点说就是原地改变. Python中,数值类型(int和float).字符串str.元组tuple都是不可变类型.而列表list.字典dict.集合