python中lambda函数 list comprehension 和 zip函数使用指南

lambda 函数

Python 支持一种有趣的语法,它允许你快速定义单行的最小函数。这些叫做 lambda 的函数,是从 Lisp 借用来的,可以用在任何需要函数的地方。

def f(x): return x*2,用lambda函数来替换可以写成:g = lambda x: x*2`g(3)结果是6.(lambda x: x*2)(3)`也是同样的效果。

这是一个 lambda 函数,完成同上面普通函数相同的事情。注意这里的简短的语法:在参数列表周围没有括号,而且忽略了 return 关键字 (隐含存在,因为整个函数只有一行)。而且,该函数没有函数名称,但是可以将它赋值给一个变量进行调用
使用 lambda 函数时甚至不需要将它赋值给一个变量。这可能不是世上最有用的东西,它只是展示了 lambda 函数只是一个内联函数。
总的来说,lambda 函数可以接收任意多个参数 (包括可选参数) 并且返回单个表达式的值。lambda 函数不能包含命令,包含的表达式不能超过一个。不要试图向 lambda 函数中塞入太多的东西;如果你需要更复杂的东西,应该定义一个普通函数,然后想让它多长就多长。 我将它们用在需要封装特殊的、非重用代码上,避免令我的代码充斥着大量单行函数。

列表推导式(list comprehension)

看一段简单代码

复制代码 代码如下:

testList = [1,2,3,4]
def mul2(x):
print x*2
[mul2(i) for i in testList]
[mul2(i) for i in testList if i%2==0]

多维数组初始化
multilist = [[0 for col in range(5)] for row in range(3)]

zip 函数

复制代码 代码如下:

>>> a = [1,2,3]
>>> b = [4,5,6]
>>> c = [4,5,6,7,8]
>>> zipped = zip(a,b)
[(1, 4), (2, 5), (3, 6)]
>>> zip(a,c)
[(1, 4), (2, 5), (3, 6)]
>>> zip(*zipped)
[(1, 2, 3), (4, 5, 6)]

学习资源
学以致用

复制代码 代码如下:

m = [[-1.0, 2.0/c-1, -2.0/c+1, 1.0],
         [2.0, -3.0/c+1, 3.0/c-2, -1.0],
         [-1.0, 0.0, 1.0, 0.0],
         [0.0, 1.0/c, 0.0, 0.0]]
multiply = lambda x: x*c
m = [[multiply(m[col][row]) for col in range(4)] for row in range(4)]
print [[m[col][row] for col in range(4)] for row in range(4)]

它所作的工作:m是一个包含参数c的矩阵,他计算了c*m的结果
想了一下,最后一句改成

复制代码 代码如下:

print [[multiply(each) for each in row] for row in m]更加pythonic

二 矩阵相乘

学习资源

复制代码 代码如下:

def matrixMul(A, B):
res = [[0] * len(B[0]) for i in range(len(A))] for i in range(len(A)):
    for j in range(len(B[0])):
        for k in range(len(B)):
            res[i][j] += A[i][k] * B[k][j] return res
 def matrixMul2(A, B):
    return [[sum(a * b for a, b in zip(a, b)) for b in zip(*B)] for a in A]
 
a = [[1,2], [3,4], [5,6], [7,8]]
b = [[1,2,3,4], [5,6,7,8]]
 print matrixMul(a,b) print matrixMul(b,a) print "-"*90
 print matrixMul2(a,b) print matrixMul2(b,a) print "-"*90

时间: 2014-09-25

简单介绍Python中的filter和lambda函数的使用

filter(function or None, sequence),其中sequence 可以是list ,tuple,string.这个函数的功能是过滤出sequence 中所有以元素自身作... filter(function or None, sequence),其中sequence 可以是list ,tuple,string.这个函数的功能是过滤出sequence 中所有以元素自身作为参数调用function时返回True或bool(返回值)为True的元素并以列表返回. filter

python中的lambda表达式用法详解

本文实例讲述了python中的lambda表达式用法.分享给大家供大家参考,具体如下: 这里来为大家介绍一下lambda函数. lambda 函数是一种快速定义单行的最小函数,是从 Lisp 借用来的,可以用在任何需要函数的地方 .下面的例子比较了传统的函数定义def与lambda定义方式: >>> def f ( x ,y): ... return x * y ... >>> f ( 2,3 ) 6 >>> g = lambda x ,y: x *

Python lambda和Python def区别分析

Python支持一种有趣的语法,它允许你快速定义单行的最小函数.这些叫做lambda的函数,是从Lisp借用来的,可以用在任何需要函数的地方. lambda的语法时常会使人感到困惑,lambda是什么,为什么要使用lambda,是不是必须使用lambda? >>> def f(x): ... return x+2 ... >>> f(1) 3 >>> f = lambda x:x+2 >>> f(1) 3 >>> (

python中lambda与def用法对比实例分析

本文实例对比分析了python中lambda与def的用法.分享给大家供大家参考.具体分析如下: 1.lambda用来创建匿名函数,不同于def(def创建的函数都是有名字的). 2.lambda不会将结果赋给一个标识符,而def会将函数结果赋给一个标识符. 3.lambda是一个表达式,而def是一个语句 示例程序: >>> f1 = lambda x,y,z: x*2+y+z # lambda带有多个参数 >>> print f1(3,2,1) 9 >>

在Python中使用lambda高效操作列表的教程

介绍 lambda Python用于支持将函数赋值给变量的一个操作符 默认是返回的,所以不用再加return关键字,不然会报错 result = lambda x: x * x result(2) # return 4 map()/filter()/reduce() 需要两个参数,第一个是一个处理函数,第二个是一个序列(list,tuple,dict) map() 将序列中的元素通过处理函数处理后返回一个新的列表 filter() 将序列中的元素通过函数过滤后返回一个新的列表 reduce()

Python的lambda匿名函数的简单介绍

lambda函数也叫匿名函数,即,函数没有具体的名称.先来看一个最简单例子: 复制代码 代码如下: def f(x):return x**2print f(4) Python中使用lambda的话,写成这样 复制代码 代码如下: g = lambda x : x**2print g(4) lambda表达式在很多编程语言都有对应的实现.比如C#: 复制代码 代码如下: var g = x => x**2Console.WriteLine(g(4)) 那么,lambda表达式有什么用处呢?很多人提

深入解析Python中的lambda表达式的用法

普通的数学运算用这个纯抽象的符号演算来定义,计算结果只能在脑子里存在.所以写了点代码,来验证文章中介绍的演算规则. 我们来验证文章里介绍的自然数及自然数运算规则.说到自然数,今天还百度了一下,据度娘说,1993年后国家规定0是属于自然数.先定义自然数及自然数的运算规则: 用lambda表达式定义自然数(邱齐数) 0 := λf.λx.x 1 := λf.λx.f x 2 := λf.λx.f (f x) 3 := λf.λx.f (f (f x)) ... 上面定义直观的意思就是数字n, 是f(

python基础教程之lambda表达式使用方法

Python中,如果函数体是一个单独的return expression语句,开发者可以选择使用特殊的lambda表达式形式替换该函数: 复制代码 代码如下: lambda parameters: expression lambda表达式相当于函数体为单个return语句的普通函数的匿名函数.请注意,lambda语法并没有使用return关键字.开发者可以在任何可以使用函数引用的位置使用lambda表达式.在开发者想要使用一个简单函数作为参数或者返回值时,使用lambda表达式是很方便的.下面是

python基础教程之匿名函数lambda

 python lambda 当我们在使用函数时,有时候,并不需要显示的定义一个函数,我们可以使用匿名函数更加方便,在Python中对匿名函数也提供了支持. 比如当我们想计算两个数a,b之和时,即f(a,b) = a + b.我们可以有两种方法完成,第一种就是显示的定义一个函数f(x,y),然后将参数传进去得到结果.第二种方式就是使用匿名函数了. f = lambda x,y:x+y >>>f(1,2) 3 匿名函数lambda x,y:x+y实际上就是: def f(x, y): re

Python中lambda的用法及其与def的区别解析

python中的lambda通常是用来在python中创建匿名函数的,而用def创建的方法是有名称的,除了从表面上的方法名不一样外,python中的lambda还有如下几点和def不一样: 1. python lambda会创建一个函数对象,但不会把这个函数对象赋给一个标识符,而def则会把函数对象赋值给一个变量. 2. python lambda它只是一个表达式,而def则是一个语句. 下面是python lambda的格式,看起来非常精简. lambda x: print x 如果你在pyt

python中lambda()的用法

在C++11和C#中都有匿名函数的存在.下面看看在python中匿名函数的使用. 1.lambda只是一个表达式,函数体比def简单很多. 2.lambda的主体是一个表达式,而不是一个代码块.仅仅能在lambda表达式中封装有限的逻辑进去. 3.lambda表达式是起到一个函数速写的作用.允许在代码内嵌入一个函数的定义. 例1.定义一个lambda表达式,求三个数的和 # -*- coding: UTF-8 -*- f = lambda x,y,z:x + y + z print f(1,2,

Python中max函数用法实例分析

本文实例讲述了Python中max函数用法.分享给大家供大家参考.具体如下: 这里max函数是Python内置的函数,不需要导入math模块 # 最简单的 max(1, 2) max('a', 'b') # 也可以对列表和元组使用 max([1,2]) max((1,2)) # 还可以指定comparator function max('ah', 'bf', key=lambda x: x[1]) def comparator(x): return x[1] max('ah', 'bf', ke

Python中itertools模块用法详解

本文实例讲述了Python中itertools模块用法,分享给大家供大家参考.具体分析如下: 一般来说,itertools模块包含创建有效迭代器的函数,可以用各种方式对数据进行循环操作,此模块中的所有函数返回的迭代器都可以与for循环语句以及其他包含迭代器(如生成器和生成器表达式)的函数联合使用. chain(iter1, iter2, ..., iterN): 给出一组迭代器(iter1, iter2, ..., iterN),此函数创建一个新迭代器来将所有的迭代器链接起来,返回的迭代器从it

Python的Lambda函数用法详解

在Python中有两种函数,一种是def定义的函数,另一种是lambda函数,也就是大家常说的匿名函数.今天我就和大家聊聊lambda函数,在Python编程中,大家习惯将其称为表达式. 1.为什么要用lambda函数? 先举一个例子:将一个列表里的每个元素都平方. 先用def来定义函数,代码如下 def sq(x): return x*x map(sq,[y for y in range(10)]) 再用lambda函数来编写代码 map(lambda x: x*x,[y for y in r

Python中itertools的用法详解

iterator 循环器(iterator)是对象的容器,包含有多个对象.通过调用循环器的next()方法 (next()方法,在Python 3.x中),循环器将依次返回一个对象.直到所有的对象遍历穷尽,循环器将举出StopIteration错误. 在for i in iterator结构中,循环器每次返回的对象将赋予给i,直到循环结束.使用iter()内置函数,我们可以将诸如表.字典等容器变为循环器.比如 for i in iter([2, 4, 5, 6]): print i 标准库中的i

python中Genarator函数用法分析

本文实例讲述了python中Genarator函数用法.分享给大家供大家参考.具体如下: Generator函数的定义与普通函数的定义没有什么区别,只是在函数体内使用yield生成数据项即可.Generator函数可以被for循环遍历,而且可以通过next()方法获得yield生成的数据项. def func(n): for i in range(n): yield i for i in func(3): print i r=func(3) print r.next() print r.next

python中urllib模块用法实例详解

本文实例讲述了python中urllib模块用法.分享给大家供大家参考.具体分析如下: 一.问题: 近期公司项目的需求是根据客户提供的api,我们定时去获取数据, 之前的方案是用php收集任务存入到redis队列,然后在linux下做一个常驻进程跑某一个php文件, 该php文件就一个无限循环,判断redis队列,有就执行,没有就break. 二.解决方法: 最近刚好学了一下python, python的urllib模块或许比php的curl更快,而且简单. 贴一下代码 复制代码 代码如下: #

Python中Class类用法实例分析

本文实例讲述了Python中Class类用法.分享给大家供大家参考,具体如下: 尽管Python在Function Programming中有着其他语言难以企及的的优势,但是我们也不要忘了Python也是一门OO语言哦.因此我们关注Python在FP上的优势的同时,还得了解一下Python在OO方面的特性. 要讨论Python的OO特性,了解Python中的Class自然是首当其冲了.在Python中定义class和创建对象实例都很简单,具体代码如下: class GrandPa: def __