Java 高并发四:无锁详细介绍

在[高并发Java 一] 前言中已经提到了无锁的概念,由于在jdk源码中有大量的无锁应用,所以在这里介绍下无锁。

1 无锁类的原理详解

1.1 CAS

CAS算法的过程是这样:它包含3个参数CAS(V,E,N)。V表示要更新的变量,E表示预期值,N表示新值。仅当V
值等于E值时,才会将V的值设为N,如果V值和E值不同,则说明已经有其他线程做了更新,则当前线程什么
都不做。最后,CAS返回当前V的真实值。CAS操作是抱着乐观的态度进行的,它总是认为自己可以成功完成
操作。当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失败。失败的线程
不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。基于这样的原理,CAS
操作即时没有锁,也可以发现其他线程对当前线程的干扰,并进行恰当的处理。

我们会发现,CAS的步骤太多,有没有可能在判断V和E相同后,正要赋值时,切换了线程,更改了值。造成了数据不一致呢?

事实上,这个担心是多余的。CAS整一个操作过程是一个原子操作,它是由一条CPU指令完成的。

1.2 CPU指令

CAS的CPU指令是cmpxchg

指令代码如下:

 /*
 accumulator = AL, AX, or EAX, depending on whether
 a byte, word, or doubleword comparison is being performed
 */
 if(accumulator == Destination) {
 ZF = 1;
 Destination = Source;
 }
 else {
 ZF = 0;
 accumulator = Destination;
 }

目标值和寄存器里的值相等的话,就设置一个跳转标志,并且把原始数据设到目标里面去。如果不等的话,就不设置跳转标志了。

Java当中提供了很多无锁类,下面来介绍下无锁类。

2 无所类的使用

我们已经知道,无锁比阻塞效率要高得多。我们来看看Java是如何实现这些无锁类的。

2.1. AtomicInteger

AtomicInteger和Integer一样,都继承与Number类

public class AtomicInteger extends Number implements java.io.Serializable

AtomicInteger里面有很多CAS操作,典型的有:

public final boolean compareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

这里来解释一下unsafe.compareAndSwapInt方法,他的意思是,对于this这个类上的偏移量为valueOffset的变量值如果与期望值expect相同,那么把这个变量的值设为update。
其实偏移量为valueOffset的变量就是value

static {
 try {
 valueOffset = unsafe.objectFieldOffset
  (AtomicInteger.class.getDeclaredField("value"));
 } catch (Exception ex) { throw new Error(ex); }
}

我们此前说过,CAS是有可能会失败的,但是失败的代价是很小的,所以一般的实现都是在一个无限循环体内,直到成功为止。

public final int getAndIncrement() {
 for (;;) {
  int current = get();
  int next = current + 1;
  if (compareAndSet(current, next))
  return current;
 }
 }

2.2 Unsafe

从类名就可知,Unsafe操作是非安全的操作,比如:

根据偏移量设置值(在刚刚介绍的AtomicInteger中已经看到了这个功能)
park()(把这个线程停下来,在以后的Blog中会提到)
底层的CAS操作
非公开API,在不同版本的JDK中,可能有较大差异

2.3. AtomicReference

前面已经提到了AtomicInteger,当然还有AtomicBoolean,AtomicLong等等,都大同小异。

这里要介绍的是AtomicReference。

AtomicReference是一种模板类

public class AtomicReference<V>  implements java.io.Serializable

它可以用来封装任意类型的数据。

比如String

package test;

import java.util.concurrent.atomic.AtomicReference;

public class Test
{
 public final static AtomicReference<String> atomicString = new AtomicReference<String>("hosee");
 public static void main(String[] args)
 {
 for (int i = 0; i < 10; i++)
 {
 final int num = i;
 new Thread() {
 public void run() {
 try
 {
 Thread.sleep(Math.abs((int)Math.random()*100));
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 if (atomicString.compareAndSet("hosee", "ztk"))
 {
 System.out.println(Thread.currentThread().getId() + "Change value");
 }else {
 System.out.println(Thread.currentThread().getId() + "Failed");
 }
 };
 }.start();
 }
 }
}

结果:

10Failed
13Failed
9Change value
11Failed
12Failed
15Failed
17Failed
14Failed
16Failed
18Failed

可以看到只有一个线程能够修改值,并且后面的线程都不能再修改。

2.4.AtomicStampedReference

我们会发现CAS操作还是有一个问题的

比如之前的AtomicInteger的incrementAndGet方法

public final int incrementAndGet() {
 for (;;) {
  int current = get();
  int next = current + 1;
  if (compareAndSet(current, next))
  return next;
 }
 }

假设当前value=1当某线程int current = get()执行后,切换到另一个线程,这个线程将1变成了2,然后又一个线程将2又变成了1。此时再切换到最开始的那个线程,由于value仍等于1,所以还是能执行CAS操作,当然加法是没有问题的,如果有些情况,对数据的状态敏感时,这样的过程就不被允许了。
此时就需要AtomicStampedReference类。

其内部实现一个Pair类来封装值和时间戳。

private static class Pair<T> {
 final T reference;
 final int stamp;
 private Pair(T reference, int stamp) {
  this.reference = reference;
  this.stamp = stamp;
 }
 static <T> Pair<T> of(T reference, int stamp) {
  return new Pair<T>(reference, stamp);
 }
 }

这个类的主要思想是加入时间戳来标识每一次改变。

//比较设置 参数依次为:期望值 写入新值 期望时间戳 新时间戳

public boolean compareAndSet(V expectedReference,
     V newReference,
     int expectedStamp,
     int newStamp) {
 Pair<V> current = pair;
 return
  expectedReference == current.reference &&
  expectedStamp == current.stamp &&
  ((newReference == current.reference &&
  newStamp == current.stamp) ||
  casPair(current, Pair.of(newReference, newStamp)));
 }

当期望值等于当前值,并且期望时间戳等于现在的时间戳时,才写入新值,并且更新新的时间戳。
这里举个用AtomicStampedReference的场景,可能不太适合,但是想不到好的场景了。
场景背景是,某公司给余额少的用户免费充值,但是每个用户只能充值一次。

package test;

import java.util.concurrent.atomic.AtomicStampedReference;

public class Test
{
 static AtomicStampedReference<Integer> money = new AtomicStampedReference<Integer>(
 19, 0);

 public static void main(String[] args)
 {
 for (int i = 0; i < 3; i++)
 {
 final int timestamp = money.getStamp();
 new Thread()
 {
 public void run()
 {
 while (true)
 {
 while (true)
 {
 Integer m = money.getReference();
 if (m < 20)
 {
 if (money.compareAndSet(m, m + 20, timestamp,
  timestamp + 1))
 {
  System.out.println("充值成功,余额:"
  + money.getReference());
  break;
 }
 }
 else
 {
 break;
 }
 }
 }
 };
 }.start();
 }

 new Thread()
 {
 public void run()
 {
 for (int i = 0; i < 100; i++)
 {
 while (true)
 {
 int timestamp = money.getStamp();
 Integer m = money.getReference();
 if (m > 10)
 {
 if (money.compareAndSet(m, m - 10, timestamp,
  timestamp + 1))
 {
 System.out.println("消费10元,余额:"
  + money.getReference());
 break;
 }
 }else {
 break;
 }
 }
 try
 {
 Thread.sleep(100);
 }
 catch (Exception e)
 {
 // TODO: handle exception
 }
 }
 };
 }.start();
 }

}

解释下代码,有3个线程在给用户充值,当用户余额少于20时,就给用户充值20元。有100个线程在消费,每次消费10元。用户初始有9元,当使用AtomicStampedReference来实现时,只会给用户充值一次,因为每次操作使得时间戳+1。运行结果:

充值成功,余额:39
消费10元,余额:29
消费10元,余额:19
消费10元,余额:9

如果使用AtomicReference<Integer>或者 Atomic Integer来实现就会造成多次充值。

充值成功,余额:39
消费10元,余额:29
消费10元,余额:19
充值成功,余额:39
消费10元,余额:29
消费10元,余额:19
充值成功,余额:39
消费10元,余额:29

2.5. AtomicIntegerArray

与AtomicInteger相比,数组的实现不过是多了一个下标。

public final boolean compareAndSet(int i, int expect, int update) {
        return compareAndSetRaw(checkedByteOffset(i), expect, update);
    }

它的内部只是封装了一个普通的array

private final int[] array;

里面有意思的是运用了二进制数的前导零来算数组中的偏移量。

shift = 31 - Integer.numberOfLeadingZeros(scale);

前导零的意思就是比如8位表示12,00001100,那么前导零就是1前面的0的个数,就是4。

具体偏移量如何计算,这里就不再做介绍了。

2.6. AtomicIntegerFieldUpdater

AtomicIntegerFieldUpdater类的主要作用是让普通变量也享受原子操作。

就比如原本有一个变量是int型,并且很多地方都应用了这个变量,但是在某个场景下,想让int型变成AtomicInteger,但是如果直接改类型,就要改其他地方的应用。AtomicIntegerFieldUpdater就是为了解决这样的问题产生的。

package test;

import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;

public class Test
{
 public static class V{
 int id;
 volatile int score;
 public int getScore()
 {
 return score;
 }
 public void setScore(int score)
 {
 this.score = score;
 }

 }
 public final static AtomicIntegerFieldUpdater<V> vv = AtomicIntegerFieldUpdater.newUpdater(V.class, "score");

 public static AtomicInteger allscore = new AtomicInteger(0);

 public static void main(String[] args) throws InterruptedException
 {
 final V stu = new V();
 Thread[] t = new Thread[10000];
 for (int i = 0; i < 10000; i++)
 {
 t[i] = new Thread() {
 @Override
 public void run()
 {
 if(Math.random()>0.4)
 {
 vv.incrementAndGet(stu);
 allscore.incrementAndGet();
 }
 }
 };
 t[i].start();
 }
 for (int i = 0; i < 10000; i++)
 {
 t[i].join();
 }
 System.out.println("score="+stu.getScore());
 System.out.println("allscore="+allscore);
 }
}

上述代码将score使用 AtomicIntegerFieldUpdater变成 AtomicInteger。保证了线程安全。

这里使用allscore来验证,如果score和allscore数值相同,则说明是线程安全的。

小说明:

  1. Updater只能修改它可见范围内的变量。因为Updater使用反射得到这个变量。如果变量不可见,就会出错。比如如果某变量申明为private,就是不可行的。
  2. 为了确保变量被正确的读取,它必须是volatile类型的。如果我们原有代码中未申明这个类型,那么简单得申明一下就行,这不会引起什么问题。
  3. 由于CAS操作会通过对象实例中的偏移量直接进行赋值,因此,它不支持static字段(Unsafe.objectFieldOffset()不支持静态变量)。
时间: 2016-09-07

Java编程实现排他锁代码详解

一 .前言 某年某月某天,同事说需要一个文件排他锁功能,需求如下: (1)写操作是排他属性 (2)适用于同一进程的多线程/也适用于多进程的排他操作 (3)容错性:获得锁的进程若Crash,不影响到后续进程的正常获取锁 二 .解决方案 1. 最初的构想 在Java领域,同进程的多线程排他实现还是较简易的.比如使用线程同步变量标示是否已锁状态便可.但不同进程的排他实现就比较繁琐.使用已有API,自然想到 java.nio.channels.FileLock:如下 /** * @param file

java 多线程-锁详解及示例代码

自 Java 5 开始,java.util.concurrent.locks 包中包含了一些锁的实现,因此你不用去实现自己的锁了.但是你仍然需要去了解怎样使用这些锁. 一个简单的锁 让我们从 java 中的一个同步块开始: public class Counter{ private int count = 0; public int inc(){ synchronized(this){ return ++count; } } } 可以看到在 inc()方法中有一个 synchronized(th

Java分布式锁的三种实现方案

方案一:数据库乐观锁 乐观锁通常实现基于数据版本(version)的记录机制实现的,比如有一张红包表(t_bonus),有一个字段(left_count)记录礼物的剩余个数,用户每领取一个奖品,对应的left_count减1,在并发的情况下如何要保证left_count不为负数,乐观锁的实现方式为在红包表上添加一个版本号字段(version),默认为0. 异常实现流程 -- 可能会发生的异常情况 -- 线程1查询,当前left_count为1,则有记录 select * from t_bonus

Java 锁的知识总结及实例代码

java中有哪些锁 这个问题在我看了一遍<java并发编程>后尽然无法回答,说明自己对于锁的概念了解的不够.于是再次翻看了一下书里的内容,突然有点打开脑门的感觉.看来确实是要学习的最好方式是要带着问题去学,并且解决问题. 在java中锁主要两类:内部锁synchronized和显示锁java.util.concurrent.locks.Lock.但细细想这貌似总结的也不太对.应该是由java内置的锁和concurrent实现的一系列锁. 为什么这说,因为在java中一切都是对象,而java对每

Java 高并发九:锁的优化和注意事项详解

摘要 本系列基于炼数成金课程,为了更好的学习,做了系列的记录. 本文主要介绍: 1. 锁优化的思路和方法 2. 虚拟机内的锁优化 3. 一个错误使用锁的案例 4. ThreadLocal及其源码分析 1. 锁优化的思路和方法 在[高并发Java 一] 前言中有提到并发的级别. 一旦用到锁,就说明这是阻塞式的,所以在并发度上一般来说都会比无锁的情况低一点. 这里提到的锁优化,是指在阻塞式的情况下,如何让性能不要变得太差.但是再怎么优化,一般来说性能都会比无锁的情况差一点. 这里要注意的是,在[高并

Linux下高并发socket最大连接数所受的各种限制(详解)

1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,最高的并发数量都要受到系统对用户单一进程同时可打开文件数量的限制(这是因为系统为每个TCP连接都要创建一个socket句柄,每个socket句柄同时也是一个文件句柄).可使用ulimit命令查看系统允许当前用户进程打开的文件数限制: [speng@as4 ~]$ ulimit -n 1024 这表示当前用户的每个进程最多允许同时打开1024个文件,这1024个文件中还得除去每个进

java 高并发中volatile的实现原理

java 高并发中volatile的实现原理 摘要: 在多线程并发编程中synchronized和Volatile都扮演着重要的角色,Volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的"可见性".可见性的意思是当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值.它在某些情况下比synchronized的开销更小 1. 定义: java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致的更新,线程应该确保通过排他锁单独获得这个变量.

java并发编程_线程池的使用方法(详解)

一.任务和执行策略之间的隐性耦合 Executor可以将任务的提交和任务的执行策略解耦 只有任务是同类型的且执行时间差别不大,才能发挥最大性能,否则,如将一些耗时长的任务和耗时短的任务放在一个线程池,除非线程池很大,否则会造成死锁等问题 1.线程饥饿死锁 类似于:将两个任务提交给一个单线程池,且两个任务之间相互依赖,一个任务等待另一个任务,则会发生死锁:表现为池不够 定义:某个任务必须等待池中其他任务的运行结果,有可能发生饥饿死锁 2.线程池大小 注意:线程池的大小还受其他的限制,如其他资源池:

Java多线程Atomic包操作原子变量与原子类详解

在阅读这篇文章之前,大家可以先看下<Java多线程atomic包介绍及使用方法>,了解atomic包的相关内容. 一.何谓Atomic? Atomic一词跟原子有点关系,后者曾被人认为是最小物质的单位.计算机中的Atomic是指不能分割成若干部分的意思.如果一段代码被认为是Atomic,则表示这段代码在执行过程中,是不能被中断的.通常来说,原子指令由硬件提供,供软件来实现原子方法(某个线程进入该方法后,就不会被中断,直到其执行完成) 在x86平台上,CPU提供了在指令执行期间对总线加锁的手段.

Java实现生产者消费者问题与读者写者问题详解

1.生产者消费者问题 生产者消费者问题是研究多线程程序时绕不开的经典问题之一,它描述是有一块缓冲区作为仓库,生产者可以将产品放入仓库,消费者则可以从仓库中取走产品.解决生产者/消费者问题的方法可分为两类:(1)采用某种机制保护生产者和消费者之间的同步:(2)在生产者和消费者之间建立一个管道.第一种方式有较高的效率,并且易于实现,代码的可控制性较好,属于常用的模式.第二种管道缓冲区不易控制,被传输数据对象不易于封装等,实用性不强. 同步问题核心在于:如何保证同一资源被多个线程并发访问时的完整性.常

java中synchronized(同步代码块和同步方法)详解及区别

 java中synchronized(同步代码块和同步方法)详解及区别 问题的由来: 看到这样一个面试题: //下列两个方法有什么区别 public synchronized void method1(){} public void method2(){ synchronized (obj){} } synchronized用于解决同步问题,当有多条线程同时访问共享数据时,如果进行同步,就会发生错误,Java提供的解决方案是:只要将操作共享数据的语句在某一时段让一个线程执行完,在执行过程中,其他

java动态添加外部jar包到classpath的实例详解

java动态添加外部jar包到classpath的实例详解 前言: 在项目开发过程中我们有时候需要动态的添加外部jar包,但是具体的业务需求还没有遇到过,因为如果动态添加外部jar包后,我们就需要修改业务代码,而修改代码就需要重新启动服务,那样好像就没有必要动态添加外部jar包了,怎么样才能不重新启动服务器就可以使用最新的代码我没有找到方法,如果各位知道的话给我点建议,回归主题,实现动态添加外部jar包到classpath的方法如下: String beanClassName = "com.dy

使用Java构造和解析Json数据的两种方法(详解二)

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,是理想的数据交换格式.同时,JSON是 JavaScript 原生格式,这意味着在 JavaScript 中处理 JSON数据不须要任何特殊的 API 或工具包. 在www.json.org上公布了很多JAVA下的json构造和解析工具,其中org.json和json-lib比较简单,两者使用上差不多但还是有些区别.下面接着介绍用org.json构造和解析Json数据的方法

Java与Oracle实现事务(JDBC事务)实例详解

Java与Oracle实现事务(JDBC事务)实例详解 J2EE支持JDBC事务.JTA事务和容器事务事务,这里说一下怎样实现JDBC事务. JDBC事务是由Connection对象所控制的,它提供了两种事务模式:自己主动提交和手动提交,默认是自己主动提交. 自己主动提交就是:在JDBC中.在一个连接对象Connection中.默认把每一个SQL语句的运行都当做是一个事务(即每次运行完SQL语句都会马上将操作更新到数据库). 手动提交就是:当须要一次性运行多个SQL语句,将多个SQL语句组成一个