一文教你用Pyecharts做交互图表
一、Pyecharts简介和安装
1、简介
Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。
- 简洁的 API 设计,使用如丝滑般流畅,支持链式调用
- 囊括了 30+ 种常见图表,应有尽有
- 支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab
- 可轻松集成至 Flask,Sanic,Django 等主流 Web 框架
- 高度灵活的配置项,可轻松搭配出精美的图表
- 详细的文档和示例,帮助开发者更快的上手项目
- 多达 400+ 地图文件,并且支持原生百度地图,为地理数据可视化提供强有力的支持
pyecharts版本v0.5.x 和 v1 间不兼容,v1 是一个全新的版本,语法也有很大不同。
2、安装
安装 pyecharts

安装相关的地图扩展包

绘制地理图表
1、世界地图—数据可视化
利用 Starbucks.csv 中的数据,首先计算每个国家(Country)对应的门店数量,然后使用世界地图表示星巴克门面店在全球的分布。

运行效果如下:

2、国家地图—数据可视化
涟漪散点图
利用china.csv 中的数据,首先计算每个城市(City)对应的门店数量,然后使用 pyecharts包内 Geo 模块绘制星巴克门面店在中国分布的涟漪散点地图。

运行效果如下:

动态轨迹图


3、省市地图—数据可视化
热力图
代码如下

运行效果如下:

在地图上批量添加地址、经纬度数据,地理数据可视化
代码如下:

运行效果如下:
柱形图
代码如下:

运行效果如下:

代码如下:


代码如下:

玫瑰图
代码如下




折线图
折线图是排列在工作表的列或行中的数据可以绘制到折线图中。折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势。
绘制2019年成都AQI指数走势图




到此这篇关于一文教你用Pyecharts做交互图表的文章就介绍到这了,更多相关Pyecharts 交互图表内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
相关推荐
-
python的pyecharts绘制各种图表详细(附代码)
环境:pyecharts库,echarts-countries-pypkg,echarts-china-provinces-pypkg,echarts-china-cities-pypkg 数据:2018年4月16号的全国各地最高最低和天气类型的数据--2018-4-16.json(爬虫爬的) 代码:天气数据爬虫代码,图表绘制代码 代码地址:https://github.com/goodloving/pyecharts.git(py文件) 一.公共属性 1.标题栏的属性:一般在实例化(初始化)类
-
Flask使用Pyecharts在单个页面展示多个图表的方法
在Flask页面展示echarts,主要有两种方法: 方法1.原生echarts方法 自己在前端引入echarts.js文件.自己创建div.自己初始化echarts对象.自己从官网复制并且配置图表.自己给echarts对象设置配置项实现绘制,这种方法的缺点是配置项都是js的形式比较繁琐,对于后端开发人员来说有点过于参与前端js部分的配置开发: 这种方式参照echarts官网的方式,其实跟flask没有多大关系,php/java不同后端语言都一样,地址 方法2:使用pyecharts pyech
-
利用 Flask 动态展示 Pyecharts 图表数据的几种方法
本文将介绍如何在 web 框架 Flask 中使用可视化工具 pyecharts, 看完本教程你将掌握几种动态展示可视化数据的方法,不会的话你来找我呀... Flask 模板渲染 1. 新建一个项目 flask-echarts 在编辑器中选择 New Project,然后选择 Flask,创建完之后,Pycharm 会帮我们把启动脚本和模板文件夹都建好 2. 拷贝 pyecharts 模板 将链接中的以下模板 ├── jupyter_lab.html ├── jupyter_notebook.h
-
Python数据可视化 pyecharts实现各种统计图表过程详解
1.pyecharts介绍 Echarts是一款由百度公司开发的开源数据可视化JS库,pyecharts是一款使用python调用echarts生成数据可视化的类库,可实现柱状图,折线图,饼状图,地图等统计图表. 2.柱状图 适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况. 优点: 利用柱子的高度,反映数据的差异,肉眼对高度差异很敏感. 缺点: 只适用中小规模的数据集. 柱状图最基本用法 from pyechart
-
在Django中Pyecharts生成图表实现
1 因为pyecharts是支持python的一种可视化,但是想要将其放入网页中,主要有两种方法 (1)在网页中假如iframe,将网页嵌在iframe中(该方法不具体描述) (2)使用json传输到前端,对其进行展示 具体描述第2种方法如下: 假设用pyecharts画一张折线图 def line(): attr = ['教师', '教授', '副教授', '博导', '硕导', '国家级奖项', '省部级奖项', '院士', '荣誉学者', '专利'] v1 = [100, 20, 15,
-
一文教你用Pyecharts做交互图表
一.Pyecharts简介和安装 1.简介 Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可.而 Python 是一门富有表达力的语言,很适合用于数据处理.当数据分析遇上数据可视化时,pyecharts 诞生了. 简洁的 API 设计,使用如丝滑般流畅,支持链式调用 囊括了 30+ 种常见图表,应有尽有 支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab 可轻松集成至 Flask,Sanic,Dja
-
Python可视化神器pyecharts绘制地理图表
目录 地理图表 地理图表之热力图系列模板 人口流动趋势图(中国) 中国城市分段热力图 重庆省份微塑料分布热力图 中国城市连续热力图 中国城市热力动态图 中国城市散点热力图 地理图表 什么是地理图表?地理图表有什么作用?地理图表主要应用在那些领域? 其实这些问题看看下面的实例图形就已不攻自破了,地理图表一看首先就是地图,然后在地理图表里面展示数据,比如说热力图,趋势流动图,人口密集分布图,反正地理坐标相关的就可以运用在这个里面,其次图形支持全球地图,全球国家,中国,中国的所有的省份的地图,反正应有
-
详解vue+css3做交互特效的方法
1.前言 做项目就难免会开发交互效果或者特效,而我最近开发的项目一直在使用vue,开发技术栈方面,理所当然就使用了vue+css3开发,过程中发现使用vue+css3开发特效,和javascript/jquery+css3的思维方式不一样,但是比javascript/jquery+css3简单一点点.今天就分享三个简单的小实例,希望能起到拓展思维的作用,让大家明白vue+css3应该怎样开发交互效果!如果大家有什么好的建议,或者觉得我哪里写错了,欢迎指出! 1.文章上面的代码,虽然代码很简单,不
-
Django动态展示Pyecharts图表数据的几种方法
目录 Django 模板渲染 1. 新建一个 Django 项目 2. 新建项目 urls 文件 3. 编写 Django 和 pyecharts 代码渲染图表 定时全量更新图表 定时增量更新图表 本文将介绍如何在 web 框架 Django 中使用可视化工具 Pyecharts, 看完本教程你将掌握几种动态展示可视化数据的方法! Django 模板渲染 1. 新建一个 Django 项目 命令行中输入以下命令 django-admin startproject pyecharts_django
-
Python使用pyecharts控件绘制图表
目录 一.Echarts简介 1.特性 2.相关资源: 二.使用 1.柱状图-Bar 2.饼图-Pie 3.箱体图-Boxplot 4.折线图-Line 5.雷达图-Rader 6.散点图-scatter 7.图表布局 Grid 总结 一.Echarts简介 Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可.而 Python 是一门富有表达力的语言,很适合用于数据处理.当数据分析遇上数据可视化时,pyecharts 诞生了. 分v0.5.x
-
Python数据可视化之基于pyecharts实现的地理图表的绘制
一.例子:百度迁徙 百度地图春节人口迁徙大数据(简称百度迁徙),是百度在2014年春运期间推出的一项技术项目.百度迁徙利用大数据,对其拥有的LBS(基于地理位置的服务)大数据进行计算分析,采用的可视化呈现方式,动态.即时.直观地展现中国春节前后人口大迁徙的轨迹与特征. 网址:https://qianxi.baidu.com/2021/ 二.基础语法介绍 语法 说明 from pyecharts.charts import Geo 导入地图库 Geo() Pyecharts地理图表绘制 .add_
-
详解如何基于Pyecharts绘制常见的直角坐标系图表
目录 1.直方图 2.折线图 3.箱形图 4.散点图 5.带涟漪效果散点图 6.k线图 7.热力图 8.象型图 9.层叠图 总结 1.直方图 # -*-coding:utf-8 -*- # @Time : 21:02 # @Author: 黄荣津 # @File : 1.直方图.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts i
-
Python 数据可视化pyecharts的使用详解
什么是pyecharts? pyecharts 是一个用于生成 Echarts 图表的类库. echarts是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生成 Echarts 图表的类库.实际上就是 Echarts 与 Python 的对接. 使用 pyecharts可以生成独立的网页,也可以在 flask , Django中集成使用. pyecharts包含的图表 Bar(柱状图/条形图) Bar3D(3D 柱状图) Boxplot(箱形图) Effe
随机推荐
- python正则表达式re之compile函数解析
- vue.js实现仿原生ios时间选择组件实例代码
- 正则表达式u修饰符(支持UTF-16编码)
- python中string模块各属性以及函数的用法介绍
- 深入讲解Java编程中类的生命周期
- JavaScript 对Cookie 操作的封装小结
- PHP在获取指定目录下的目录,在获取的目录下面再创建文件,多平台
- PHP防范SQL注入的具体方法详解(测试通过)
- Android TableLayout数据列表的回显清空实现思路及代码
- php获取当月最后一天函数分享
- python采用requests库模拟登录和抓取数据的简单示例
- python连接oracle数据库实例
- Vue 进阶教程之v-model详解
- 动态加载jQuery的两种方法实例分析
- 详解Java中格式化日期的DateFormat与SimpleDateFormat类
- js简单实现点击左右运动的方法
- 微信小程序实现图片轮播及文件上传
- php中实现简单的ACL 完结篇
- Java设计模式之代理模式原理及实现代码分享
- 关于Java中你所不知道的Integer详解
