Python数据可视化之基于pyecharts实现的地理图表的绘制

一、例子:百度迁徙

百度地图春节人口迁徙大数据(简称百度迁徙),是百度在2014年春运期间推出的一项技术项目。百度迁徙利用大数据,对其拥有的LBS(基于地理位置的服务)大数据进行计算分析,采用的可视化呈现方式,动态、即时、直观地展现中国春节前后人口大迁徙的轨迹与特征。

网址https://qianxi.baidu.com/2021/

二、基础语法介绍


语法


说明

from pyecharts.charts import Geo 导入地图库
Geo() Pyecharts地理图表绘制
.add_map(maptype=“china“) 地图类型
.add() 添加数据
.set_global_opts() 设置全局配置项

三、中国地图绘制

实例代码:

from pyecharts.charts import Geo
import pyecharts.options as opts
from commons import Faker

(
    Geo()
    .add_schema(maptype='china')    # 使用中国地图的类型
    .add(series_name='', data_pair=[(i, j) for i, j in zip(Faker.provinces, Faker.values())])
    .set_global_opts(
        title_opts=opts.TitleOpts(title='中国地图'),
        visualmap_opts=opts.VisualMapOpts(
#             is_piecewise=True   # 非连续型显示
        )
    )
).render()

运行结果:

四、中国地图(特效散点图)

实例代码:

from pyecharts.charts import Geo
import pyecharts.options as opts
from pyecharts.globals import ChartType
from commons import Faker

(
    Geo()
    .add_schema(maptype='china')     # 使用中国地图的类型
    .add(series_name='', data_pair=[(i, j) for i, j in zip(Faker.provinces, Faker.values())],
        type_=ChartType.EFFECT_SCATTER)
    .set_global_opts(
        title_opts=opts.TitleOpts(title='中国地图(特效散点图)'),
        visualmap_opts=opts.VisualMapOpts(
            is_piecewise=True
        )
    )
).render()

运行结果:

五、中国人口地理迁徙图绘制

 实例代码:

from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType
import pyecharts.options as opts

# 数据构建(元组形式)
city_num = [('广州', 105), ('成都', 70), ('北京', 99), ('西安', 80)]
start_end = [('广州', '成都'), ('广州', '北京'), ('广州', '西安')]

(
    Geo()
    .add_schema(maptype='china', itemstyle_opts=opts.ItemStyleOpts(color='#323c48', border_color='#111'))   # 地图形式设置
    .add('', data_pair=city_num, color='white')    # 地图数据颜色设置(点)
    .add('', data_pair=start_end, type_=ChartType.LINES,   # 设置线
         effect_opts=opts.EffectOpts(symbol=SymbolType.ARROW,color='blue', symbol_size=7))   # 流动箭头绘制
).render()

运行结果:

六、热力图:广东地图热力图绘制1

实例代码:

from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType

c = (
    Geo()
    .add_schema(maptype="广东", itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"),)
    .add("",[list(z) for z in zip(Faker.guangdong_city, Faker.values())],type_=ChartType.HEATMAP)
    .set_global_opts(
        visualmap_opts=opts.VisualMapOpts(),
        title_opts=opts.TitleOpts(title="广东地图热力图"),
    )
)

c.render()

运行结果:

七、热力图:广东地图热力图绘制2

 实例代码:

from pyecharts.charts import Map
from pyecharts import options as opts
from pyecharts.globals import ChartType

c = (
    Map()
    .add('', [list(z) for z in zip(Faker.guangdong_city, Faker.values())], "广东")
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Map-广东地图"),
        visualmap_opts=opts.VisualMapOpts(),
    )
)

c.render()

运行结果:

到此这篇关于Python数据可视化之基于pyecharts实现的地理图表的绘制的文章就介绍到这了,更多相关pyecharts绘制地理图表内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2021-06-09

Python数据可视化 pyecharts实现各种统计图表过程详解

1.pyecharts介绍 Echarts是一款由百度公司开发的开源数据可视化JS库,pyecharts是一款使用python调用echarts生成数据可视化的类库,可实现柱状图,折线图,饼状图,地图等统计图表. 2.柱状图 适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况. 优点: 利用柱子的高度,反映数据的差异,肉眼对高度差异很敏感. 缺点: 只适用中小规模的数据集. 柱状图最基本用法 from pyechart

python用pyecharts实现地图数据可视化

有的时候,我们需要对不同国家或地区的某项指标进行比较,可简单通过直方图加以比较.但直方图在视觉上并不能很好突出地区间的差异,因此考虑地理可视化,通过地图上位置(地理位置)和颜色(颜色深浅代表数值差异)两个元素加以体现.在本文案例中,基于第三方库pyecharts,对中国各省2010-2019年的GDP进行绘制. 我们先来看看最终效果: 关于绘图数据 基于时间和截面两个维度,可把数据分为截面数据.时间序列及面板数据.在本文案例中,某一年各省的GDP属于截面数据,多年各省的GDP属于面板数据.因此,

python的pyecharts绘制各种图表详细(附代码)

环境:pyecharts库,echarts-countries-pypkg,echarts-china-provinces-pypkg,echarts-china-cities-pypkg 数据:2018年4月16号的全国各地最高最低和天气类型的数据--2018-4-16.json(爬虫爬的) 代码:天气数据爬虫代码,图表绘制代码 代码地址:https://github.com/goodloving/pyecharts.git(py文件) 一.公共属性 1.标题栏的属性:一般在实例化(初始化)类

python绘图pyecharts+pandas的使用详解

pyecharts介绍 pyecharts 是一个用于生成 Echarts 图表的类库.Echarts 是百度开源的一个数据可视化 JS 库.用 Echarts 生成的图可视化效果非常棒 为避免绘制缺漏,建议全部安装 为了避免下载缓慢,作者全部使用镜像源下载过了 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-countries-pypkg pip install -i https://pypi.tuna.tsin

Python pandas常用函数详解

本文研究的主要是pandas常用函数,具体介绍如下. 1 import语句 import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime import re 2 文件读取 df = pd.read_csv(path='file.csv') 参数:header=None 用默认列名,0,1,2,3... names=['A', 'B', 'C'...] 自定义列名 index_col='

matplotlib在python上绘制3D散点图实例详解

大家可以先参考官方演示文档: 效果图: ''' ============== 3D scatterplot ============== Demonstration of a basic scatterplot in 3D. ''' from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np def randrange(n, vmin, vmax): ''' Helper f

VTK与Python实现机械臂三维模型可视化详解

三维可视化系统的建立依赖于三维图形平台, 如 OpenGL.VTK.OGRE.OSG等, 传统的方法多采用OpenGL进行底层编程,即对其特有的函数进行定量操作, 需要开发人员熟悉相关函数, 从而造成了开发难度大. 周期长等问题.VTK. ORGE.OSG等平台使用封装更好的函数简化了开发过程.下面将使用Python与VTK进行机器人上位机监控界面的快速原型开发. 完整的上位机程序需要有三维显示模块.机器人信息监测模块(位置/角度/速度/电量/温度/错误信息...).通信模块(串口/USB/WI

Python机器学习之K-Means聚类实现详解

本文为大家分享了Python机器学习之K-Means聚类的实现代码,供大家参考,具体内容如下 1.K-Means聚类原理 K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.其基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果.各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开. 算法大致流程为:(1)随机选取k个点作为种子点(这k个点不一定属于数据集)

对Python中plt的画图函数详解

1.plt.legend plt.legend(loc=0)#显示图例的位置,自适应方式 说明: 'best' : 0, (only implemented for axes legends)(自适应方式) 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8,

python DataFrame转dict字典过程详解

这篇文章主要介绍了python DataFrame转dict字典过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 背景:将商品id以及商品类别作为字典的键值映射,生成字典,原为DataFrame # 创建一个DataFrame # 列值类型均为int型 import pandas as pd item = pd.DataFrame({'item_id': [100120, 10024504, 1055460], 'item_categor

python实现PCA降维的示例详解

概述 本文主要介绍一种降维方法,PCA(Principal Component Analysis,主成分分析).降维致力于解决三类问题. 1. 降维可以缓解维度灾难问题: 2. 降维可以在压缩数据的同时让信息损失最小化: 3. 理解几百个维度的数据结构很困难,两三个维度的数据通过可视化更容易理解. PCA简介 在理解特征提取与处理时,涉及高维特征向量的问题往往容易陷入维度灾难.随着数据集维度的增加,算法学习需要的样本数量呈指数级增加.有些应用中,遇到这样的大数据是非常不利的,而且从大数据集中学习

python数据预处理 :数据共线性处理详解

何为共线性: 共线性问题指的是输入的自变量之间存在较高的线性相关度.共线性问题会导致回归模型的稳定性和准确性大大降低,另外,过多无关的维度计算也很浪费时间 共线性产生原因: 变量出现共线性的原因: 数据样本不够,导致共线性存在偶然性,这其实反映了缺少数据对于数据建模的影响,共线性仅仅是影响的一部分 多个变量都给予时间有共同或相反的演变趋势,例如春节期间的网络销售量和销售额都相对与正常时间有下降趋势. 多个变量存在一定的推移关系,但总体上变量间的趋势一致,只是发生的时间点不一致,例如广告费用和销售

pandas分组聚合详解

一 前言 pandas学到分组迭代,那么基础的pandas系列就学的差不多了,自我感觉不错,知识追寻者用pandas处理过一些数据,蛮好用的: 知识追寻者(Inheriting the spirit of open source, Spreading technology knowledge;) 二 分组 2.1 数据准备 # -*- coding: utf-8 -*- import pandas as pd import numpy as np frame = pd.DataFrame({ '

Python实现画图软件功能方法详解

概述 虽然Python的强项在人工智能,数据处理方面,但是对于日常简单的应用,Python也提供了非常友好的支持(如:Tkinter),本文主要一个简单的画图小软件,简述Python在GUI(图形用户界面)方面的应用,仅供学习分享使用,如有不足之处,还请指正. 设计思路 页面布局:主要分为上下两部分 a. 绘图区域,本例以Canvas实现 b. 下部:功能区,由按钮实现 事件监听:通过给功能按钮绑定事件,来实现不同的功能,如:绘线,绘矩形等功能. 绘图区域:监听鼠标左键的按下(开始绘图)和抬起(