C#实现FFT(递归法)的示例代码

目录
  • 1. C#实现复数类
  • 2. 递归法实现FFT
  • 3. 补充:窗函数

1. C#实现复数类

我们在进行信号分析的时候,难免会使用到复数。但是遗憾的是,C#没有自带的复数类,以下提供了一种复数类的构建方法。

复数相比于实数,可以理解为一个二维数,构建复数类,我们需要实现以下这些内容:

  • 复数实部与虚部的属性
  • 复数与复数的加减乘除运算
  • 复数与实数的加减乘除运算
  • 复数取模
  • 复数取相位角
  • 欧拉公式(即eix+y

C#实现的代码如下:

 public class Complex
    {
        double real;
        double imag;
        public Complex(double x, double y)   //构造函数
        {
            this.real = x;
            this.imag = y;
        }
        //通过属性实现对复数实部与虚部的单独查看和设置
        public double Real
        {
            set { this.real = value; }
            get { return this.real; }
        }
        public double Imag
        {
            set { this.imag = value; }
            get { return this.imag; }
        }
        //重载加法
        public static Complex operator +(Complex c1, Complex c2)
        {
            return new Complex(c1.real + c2.real, c1.imag + c2.imag);
        }
        public static Complex operator +(double c1, Complex c2)
        {
            return new Complex(c1 + c2.real, c2.imag);
        }
        public static Complex operator +(Complex c1, double c2)
        {
            return new Complex(c1.Real + c2, c1.imag);
        }
        //重载减法
        public static Complex operator -(Complex c1, Complex c2)
        {
            return new Complex(c1.real - c2.real, c1.imag - c2.imag);
        }
        public static Complex operator -(double c1, Complex c2)
        {
            return new Complex(c1 - c2.real, -c2.imag);
        }
        public static Complex operator -(Complex c1, double c2)
        {
            return new Complex(c1.real - c2, c1.imag);
        }
        //重载乘法
        public static Complex operator *(Complex c1, Complex c2)
        {
            double cr = c1.real * c2.real - c1.imag * c2.imag;
            double ci = c1.imag * c2.real + c2.imag * c1.real;
            return new Complex(Math.Round(cr, 4), Math.Round(ci, 4));
        }
        public static Complex operator *(double c1, Complex c2)
        {
            double cr = c1 * c2.real;
            double ci = c1 * c2.imag;
            return new Complex(Math.Round(cr, 4), Math.Round(ci, 4));
        }
        public static Complex operator *(Complex c1, double c2)
        {
            double cr = c1.Real * c2;
            double ci = c1.Imag * c2;
            return new Complex(Math.Round(cr, 4), Math.Round(ci, 4));
        }

        //重载除法
        public static Complex operator /(Complex c1, Complex c2)
        {
            if (c2.real == 0 && c2.imag == 0)
            {
                return new Complex(double.NaN, double.NaN);
            }
            else
            {
                double cr = (c1.imag * c2.imag + c2.real * c1.real) / (c2.imag * c2.imag + c2.real * c2.real);
                double ci = (c1.imag * c2.real - c2.imag * c1.real) / (c2.imag * c2.imag + c2.real * c2.real);
                return new Complex(Math.Round(cr, 4), Math.Round(ci, 4));           //保留四位小数后输出
            }
        }

        public static Complex operator /(double c1, Complex c2)
        {
            if (c2.real == 0 && c2.imag == 0)
            {
                return new Complex(double.NaN, double.NaN);
            }
            else
            {
                double cr = c1 * c2.Real / (c2.imag * c2.imag + c2.real * c2.real);
                double ci = -c1 * c2.imag / (c2.imag * c2.imag + c2.real * c2.real);
                return new Complex(Math.Round(cr, 4), Math.Round(ci, 4));           //保留四位小数后输出
            }
        }

        public static Complex operator /(Complex c1, double c2)
        {
            if (c2 == 0)
            {
                return new Complex(double.NaN, double.NaN);
            }
            else
            {
                double cr = c1.Real / c2;
                double ci = c1.imag / c2;
                return new Complex(Math.Round(cr, 4), Math.Round(ci, 4));           //保留四位小数后输出
            }
        }
        //创建一个取模的方法
        public static double Abs(Complex c)
        {
            return Math.Sqrt(c.imag * c.imag + c.real * c.real);
        }
        //创建一个取相位角的方法
        public static double Angle(Complex c)
        {
            return Math.Round(Math.Atan2(c.real, c.imag), 6);//保留6位小数输出
        }
        //重载字符串转换方法,便于显示复数
        public override string ToString()
        {
            if (imag >= 0)
                return string.Format("{0}+i{1}", real, imag);
            else
                return string.Format("{0}-i{1}", real, -imag);
        }
        //欧拉公式
        public static Complex Exp(Complex c)
        {
            double amplitude = Math.Exp(c.real);
            double cr = amplitude * Math.Cos(c.imag);
            double ci = amplitude * Math.Sin(c.imag);
            return new Complex(Math.Round(cr, 4), Math.Round(ci, 4));//保留四位小数输出
        }
    }

2. 递归法实现FFT

以下的递归法是基于奇偶分解实现的。

奇偶分解的原理推导如下:

x(2r)和x(2r+1)都是长度为N/2−1的数据序列,不妨令

则原来的DFT就变成了:

于是,将原来的N点傅里叶变换变成了两个N/2点傅里叶变换的线性组合。

但是,N/2点傅里叶变换只能确定N/2个频域数据,另外N/2个数据怎么确定呢?

因为X1(k)和X2(k)周期都是N/2,所以有

从而得到:

综上,我们就可以得到递归法实现FFT的流程:

1.对于每组数据,按奇偶分解成两组数据

2.两组数据分别进行傅里叶变换,得到X1(k)和X2(k)

3.总体数据的X(k)由下式确定:

4.对上述过程进行递归

具体代码实现如下:

public Complex[] FFTre(Complex[] c)
{
    int n = c.Length;
    Complex[] cout = new Complex[n];
    if (n == 1)
    {
        cout[0] = c[0];
        return cout;
    }
    else
    {
        double n_2_f = n / 2;
        int n_2 = (int)Math.Floor(n_2_f);
        Complex[] c1 = new Complex[n / 2];
        Complex[] c2 = new Complex[n / 2];
        for (int i = 0; i < n_2; i++)
        {
            c1[i] = c[2 * i];
            c2[i] = c[2 * i + 1];
        }
        Complex[] c1out = FFTre(c1);
        Complex[] c2out = FFTre(c2);
        Complex[] c3 = new Complex[n / 2];
        for (int i = 0; i < n / 2; i++)
        {
            c3[i] = new Complex(0, -2 * Math.PI * i / n);
        }
        for (int i = 0; i < n / 2; i++)
        {
            c2out[i] = c2out[i] * Complex.Exp(c3[i]);
        }

        for (int i = 0; i < n / 2; i++)
        {
            cout[i] = c1out[i] + c2out[i];
            cout[i + n / 2] = c1out[i] - c2out[i];
        }
        return cout;
    }
}

3. 补充:窗函数

顺便提供几个常用的窗函数:

  • Rectangle
  • Bartlett
  • Hamming
  • Hanning
  • Blackman
    public class WDSLib
    {
        //以下窗函数均为periodic
        public double[] Rectangle(int len)
        {
            double[] win = new double[len];
            for (int i = 0; i < len; i++)
            {
                win[i] = 1;
            }
            return win;
        }

        public double[] Bartlett(int len)
        {
            double length = (double)len - 1;
            double[] win = new double[len];
            for (int i = 0; i < len; i++)
            {
                if (i < len / 2) { win[i] = 2 * i / length; }
                else { win[i] = 2 - 2 * i / length; }
            }
            return win;
        }

        public double[] Hamming(int len)
        {
            double[] win = new double[len];
            for (int i = 0; i < len; i++)
            {
                win[i] = 0.54 - 0.46 * Math.Cos(Math.PI * 2 * i / len);
            }
            return win;
        }

        public double[] Hanning(int len)
        {
            double[] win = new double[len];
            for (int i = 0; i < len; i++)
            {
                win[i] = 0.5 * (1 - Math.Cos(2 * Math.PI * i / len));
            }
            return win;
        }

        public double[] Blackman(int len)
        {
            double[] win = new double[len];
            for (int i = 0; i < len; i++)
            {
                win[i] = 0.42 - 0.5 * Math.Cos(Math.PI * 2 * (double)i / len) + 0.08 * Math.Cos(Math.PI * 4 * (double)i / len);
            }
            return win;
        }
    }

以上就是C#实现FFT(递归法)的示例代码的详细内容,更多关于C# FFT递归法的资料请关注我们其它相关文章!

(0)

相关推荐

  • C#利用递归算法解决汉诺塔问题

    目录 一.什么是递归 二.汉诺塔问题 1.汉诺塔的故事 2.解决思路 3.怎么解决汉诺塔问题 4.具体代码实现 三.完整代码 一.什么是递归 方法调用自己的行为就是递归,递归必须要有终止条件,不然它会无限递归. 1.先来看一下一个递归的例子 此程序的Fact方法从大到小地一级一级地调用自己,直到参数为1,然后就开始返回一级一级的从小到大地累乘,然后就计算出number的阶乘了. static int Fact(int num) { if (num <= 1) { return num; } el

  • C# 递归算法详解

    目录 1)1.1.2.3.5.8.......用递归算法求第30位数的值? 2)编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)斐波那契数列为:0.1.1.2.3.--, 3)求1+2+3+4+5+....+n的值 4)有两个整数型数组,从小到大排列,编写一个算法将其合并到一个数组中,并从小到大排列 总结 1)1.1.2.3.5.8.......用递归算法求第30位数的值? 首先我们能够发现从第3位数起后一位数等于前两位数值之和,即:x=(x-1)+(x-2),x>2; 这里须

  • C#递归算法和排列算法

    一.递归算法 递归:你打开面前这扇门,看到屋里面还有一扇门.你走过去,发现手中的钥匙还可以打开它,你推开门,发现里面还有一扇门,你继续打开它.若干次之后,你打开面前的门后,发现只有一间屋子,没有门了.然后,你开始原路返回,每走回一间屋子,你数一次,走到入口的时候,你可以回答出你到底用这你把钥匙打开了几扇门. 循环:你打开面前这扇门,看到屋里面还有一扇门.你走过去,发现手中的钥匙还可以打开它,你推开门,发现里面还有一扇门(若前面两扇门都一样,那么这扇门和前两扇门也一样:如果第二扇门比第一扇门小,那

  • C#实现递归算法经典实例

    目录 一 .递归算法简介 二 .Fibonacci数列和阶乘 1.Fibonacci数列 2.阶乘 三 .汉诺塔问题 四 .排列组合 1.输出任意个数字母.数字的全排列 2.将全排列结果保存到链表中 总结 一 .递归算法简介 在数学与计算机科学中,递归是指在函数的定义中使用函数自身的方法. 递归算法是一种直接或者间接地调用自身算法的过程.在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解. 递归算法解决问题的特点: (1) 递归就是在过程或函数里调用自身

  • 经典实例讲解C#递归算法

    一 .递归算法简介 在数学与计算机科学中,递归是指在函数的定义中使用函数自身的方法. 递归算法是一种直接或者间接地调用自身算法的过程.在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解. 递归算法解决问题的特点: (1) 递归就是在过程或函数里调用自身. (2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口. (3) 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低.所以一般不提倡用递归算法设计程序. (4) 在递归调用的过程当中

  • C#实现FFT(递归法)的示例代码

    目录 1. C#实现复数类 2. 递归法实现FFT 3. 补充:窗函数 1. C#实现复数类 我们在进行信号分析的时候,难免会使用到复数.但是遗憾的是,C#没有自带的复数类,以下提供了一种复数类的构建方法. 复数相比于实数,可以理解为一个二维数,构建复数类,我们需要实现以下这些内容: 复数实部与虚部的属性 复数与复数的加减乘除运算 复数与实数的加减乘除运算 复数取模 复数取相位角 欧拉公式(即eix+y) C#实现的代码如下: public class Complex { double real

  • C语言之整数划分问题(递归法)实例代码

    C语言之整数划分问题(递归法)实例代码 整数划分问题是算法中的一个经典命题之一,有关这个问题的讲述在讲解到递归时基本都将涉及.所谓整数划分,是指把一个正整数n写成如下形式: n=m1+m2+...+mi; (其中mi为正整数,并且1 <= mi <= n),则{m1,m2,...,mi}为n的一个划分. 如果{m1,m2,...,mi}中的最大值不超过m,即max(m1,m2,...,mi)<=m,则称它属于n的一个m划分.这里我们记n的m划分的个数为f(n,m); 例如但n=4时,他有

  • Python&Matla实现模拟退火法的示例代码

    目录 1Python实现 1.1源码实现 1.2 sko.SA实现 2Matlab实现 2.1模拟退火法 2.2蒙特卡诺法 1 Python实现 1.1 源码实现 我在前面已经给出了模拟退火法的完整知识点和源码实现:智能优化算法—蚁群算法(Python实现) 模拟退火和蒙特卡洛实验一样,全局随机,由于没有自适应的过程(例如向最优靠近.权重梯度下降等),对于复杂函数寻优,很难会找到最优解,都是近似最优解:然而像蝙蝠算法.粒子群算法等有向最优逼近且通过最优最差调整参数的步骤,虽然对于下图函数易陷入局

  • vue el-table实现递归嵌套的示例代码

    说明: el-table有一个表格一级数据和二级数据显示的是一样的,像这种就可以用递归实现.数据结构是这样子的: tableData:[{ name: "Lucy", age: 18, mobile: "11111111111", type: 1, friends:[{ name: "Lucy-friend1", age: 16, mobile: "11111111111" },{ name: "Lucy-frien

  • JavaScript实现无限级递归树的示例代码

    需求 最近遇到一个需求,平时被后台惯着直接返回了树形结构给到前端,前端对这种嵌套类型的数据(如地区的级联或菜单的树形结构)省掉了一层处理.换了个后台开发返回了扁平化的数组数据给到前端自己去处理如下data.突然有点慌...... const data = [ { "area_id": 5, "name": "广东省", "parent_id": 0, }, { "area_id": 6, "nam

  • java栈实现二叉树的非递归遍历的示例代码

    一般来说遍历二叉树用到递归,但是用Stack进行遍历也是一个不错的方法. 二叉树设置 class Node{ public int val; public Node left; public Node right; public Node(int v) { val=v; left=null; right=null; } } public class Main { public static void main(String[] args) { Node head =new Node(0); No

  • Python torch.fft.rfft()函数用法示例代码

    目录 1.旧版 2.新版 3.新旧版对比 补充:使用numpy模拟torch.fft.fft拯救paddle 总结 在新旧版的torch中的傅里叶变换函数在定义和用法上存在不同,记录一下. 1.旧版 fft = torch.rfft(input, 2, normalized=True, onesided=False) # input 为输入的图片或者向量,dtype=torch.float32,size比如为[1,3,64,64] # signal_ndim(int):The number of

  • C++实现顺序排序算法简单示例代码

    本文实例讲述了最直接的顺序排序法VC++示例代码,还记得以前上学时候这是计算机的必考题,而且在排序算法中,顺序排序似乎是最简单的了,也是最容易掌握的.现在列出来让大家重新回顾一下! 具体代码如下: //顺序排序 void InsertSort(int r[], int n){ for (int i=2; i<n; i++){ r[0]=r[i]; //设置哨兵 for (int j=i-1; r[0]<r[j]; j--) //寻找插入位置 r[j+1]=r[j]; //记录后移 r[j+1]

  • Java实现二叉树的示例代码(递归&迭代)

    目录 1.二叉树基本概念见上节:详解Java中二叉树的基础概念(递归&迭代) 2.本次展示链式存储 以此图为例,完整代码如下: //基础二叉树实现 //使用左右孩子表示法 import java.util.*; import java.util.Deque; public class myBinTree { private static class TreeNode{ char val; TreeNode left; TreeNode right; public TreeNode(char va

  • JAVA用递归实现全排列算法的示例代码

    求一个n阶行列式,一个比较简单的方法就是使用全排列的方法,那么简述以下全排列算法的递归实现. 首先举一个简单的例子说明算法的原理,既然是递归,首先说明一下出口条件.以[1, 2]为例 首先展示一下主要代码(完整代码在后面),然后简述 //对数组array从索引为start到最后的元素进行全排列 public void perm(int[]array,int start) { if(start==array.length) { //出口条件 for(int i=0;i<array.length;i

随机推荐