Python数据预处理之数据规范化(归一化)示例

本文实例讲述了Python数据预处理之数据规范化。分享给大家供大家参考,具体如下:

数据规范化

为了消除指标之间的量纲和取值范围差异的影响,需要进行标准化(归一化)处理,将数据按照比例进行缩放,使之落入一个特定的区域,便于进行综合分析。

数据规范化方法主要有:

- 最小-最大规范化
- 零-均值规范化

数据示例

代码实现

#-*- coding: utf-8 -*-
#数据规范化
import pandas as pd
import numpy as np
datafile = 'normalization_data.xls' #参数初始化
data = pd.read_excel(datafile, header = None) #读取数据
(data - data.min())/(data.max() - data.min()) #最小-最大规范化
(data - data.mean())/data.std() #零-均值规范化

从命令行可以看到下面的输出:

>>> (data-data.min())/(data.max()-data.min(
          0         1         2         3
0  0.074380  0.937291  0.923520  1.000000
1  0.619835  0.000000  0.000000  0.850941
2  0.214876  0.119565  0.813322  0.000000
3  0.000000  1.000000  1.000000  0.563676
4  1.000000  0.942308  0.996711  0.804149
5  0.264463  0.838629  0.814967  0.909310
6  0.636364  0.846990  0.786184  0.929571

>>> (data-data.mean())/data.std()
          0         1         2         3
0 -0.905383  0.635863  0.464531  0.798149
1  0.604678 -1.587675 -2.193167  0.369390
2 -0.516428 -1.304030  0.147406 -2.078279
3 -1.111301  0.784628  0.684625 -0.456906
4  1.657146  0.647765  0.675159  0.234796
5 -0.379150  0.401807  0.152139  0.537286
6  0.650438  0.421642  0.069308  0.595564

上述代码改为使用print语句打印,如下:

#-*- coding: utf-8 -*-
#数据规范化
import pandas as pd
import numpy as np
datafile = 'normalization_data.xls' #参数初始化
data = pd.read_excel(datafile, header = None) #读取数据
print((data - data.min())/(data.max() - data.min())) #最小-最大规范化
print((data - data.mean())/data.std()) #零-均值规范化

可输出如下打印结果:

0         1         2         3
0  0.074380  0.937291  0.923520  1.000000
1  0.619835  0.000000  0.000000  0.850941
2  0.214876  0.119565  0.813322  0.000000
3  0.000000  1.000000  1.000000  0.563676
4  1.000000  0.942308  0.996711  0.804149
5  0.264463  0.838629  0.814967  0.909310
6  0.636364  0.846990  0.786184  0.929571
          0         1         2         3
0 -0.905383  0.635863  0.464531  0.798149
1  0.604678 -1.587675 -2.193167  0.369390
2 -0.516428 -1.304030  0.147406 -2.078279
3 -1.111301  0.784628  0.684625 -0.456906
4  1.657146  0.647765  0.675159  0.234796
5 -0.379150  0.401807  0.152139  0.537286
6  0.650438  0.421642  0.069308  0.595564

附:代码中使用到的normalization_data.xls点击此处本站下载

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

时间: 2019-01-08

对python3 一组数值的归一化处理方法详解

1.什么是归一化: 归一化就是把一组数(大于1)化为以1为最大值,0为最小值,其余数据按百分比计算的方法.如:1,2,3.,那归一化后就是:0,0.5,1 2.归一化步骤: 如:2,4,6 (1)找出一组数里的最小值和最大值,然后就算最大值和最小值的差值 min = 2: max = 6: r = max - min = 4 (2)数组中每个数都减去最小值 2,4,6 变成 0,2,4 (3)再除去差值r 0,2,4 变成 0,0.5,1 就得出归一化后的数组了 3.用python 把一个矩阵中

python numpy 按行归一化的实例

如下所示: import numpy as np Z=np.random.random((5,5)) Zmax,Zmin=Z.max(axis=0),Z.min(axis=0) Z=(Z-Zmin)/(Zmax-Zmin) print(Z) 以上这篇python numpy 按行归一化的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

基于数据归一化以及Python实现方式

数据归一化: 数据的标准化是将数据按比例缩放,使之落入一个小的特定区间,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权. 为什么要做归一化: 1)加快梯度下降求最优解的速度 如果两个特征的区间相差非常大,其所形成的等高线非常尖,很有可能走"之字型"路线(垂直等高线走),从而导致需要迭代很多次才能收敛. 2)有可能提高精度 一些分类器需要计算样本之间的距离,如果一个特征值域范围非常大,那么距离计算就主要取决于这个特征,从而与实际情况相悖(比如这时

python实现几种归一化方法(Normalization Method)

数据归一化问题是数据挖掘中特征向量表达时的重要问题,当不同的特征成列在一起的时候,由于特征本身表达方式的原因而导致在绝对数值上的小数据被大数据"吃掉"的情况,这个时候我们需要做的就是对抽取出来的features vector进行归一化处理,以保证每个特征被分类器平等对待.下面我描述几种常见的Normalization Method,并提供相应的python实现(其实很简单): 1.(0,1)标准化: 这是最简单也是最容易想到的方法,通过遍历feature vector里的每一个数据,将

详解python实现数据归一化处理的方式:(0,1)标准化

在机器学习过程中,对数据的处理过程中,常常需要对数据进行归一化处理,下面介绍(0, 1)标准化的方式,简单的说,其功能就是将预处理的数据的数值范围按一定关系"压缩"到(0,1)的范围类. 通常(0, 1)标注化处理的公式为: 即将样本点的数值减去最小值,再除以样本点数值最大与最小的差,原理公式就是这么基础. 下面看看使用python语言来编程实现吧 import numpy as np import matplotlib.pyplot as plt def noramlization(

python 实现对数据集的归一化的方法(0-1之间)

多数情况下,需要对数据集进行归一化处理,再对数据进行分析 #首先,引入两个库 ,numpy,sklearn from sklearn.preprocessing import MinMaxScaler import numpy as np #将csv文件导入矩阵当中 my_matrix = np.loadtxt(open("xxxx.csv"),delimiter=",",skiprows=0) #将数据集进行归一化处理 scaler = MinMaxScaler(

kNN算法python实现和简单数字识别的方法

本文实例讲述了kNN算法python实现和简单数字识别的方法.分享给大家供大家参考.具体如下: kNN算法算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类. 函数解析: 库函数: tile() 如tile(A,n)就是将A重复n次

python中常用的九种预处理方法分享

本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍; 1. 标准化(Standardization or Mean Removal and Variance Scaling) 变换后各维特征有0均值,单位方差.也叫z-score规范化(零均值规范化).计算方式是将特征值减去均值,除以标准差. sklearn.preprocessing.scale(X) 一般会把train和test集放在一起做标准化,或者在train集上做标准化

Python下的Softmax回归函数的实现方法(推荐)

Softmax回归函数是用于将分类结果归一化.但它不同于一般的按照比例归一化的方法,它通过对数变换来进行归一化,这样实现了较大的值在归一化过程中收益更多的情况. Softmax公式 Softmax实现方法1 import numpy as np def softmax(x): """Compute softmax values for each sets of scores in x.""" pass # TODO: Compute and re

Python编程之基于概率论的分类方法:朴素贝叶斯

概率论啊概率论,差不多忘完了. 基于概率论的分类方法:朴素贝叶斯 1. 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础--贝叶斯定理.最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类. 2. 贝叶斯理论 & 条件概率 2.1 贝叶斯理论 我们现在有一个数据集,它由两类数据组成,数据分布如下图所示: 我们现在用 p1(x,y) 表示数据点 (x,y) 属于类别 1(图中用圆点表示的类别)的概率,用 p2(

python脚本生成caffe train_list.txt的方法

首先给出代码: import os path = "/home/data//" path_exp = os.path.expanduser(path) classes = [int(p) for p in os.listdir(path_exp)] classes.sort() # nrof_classes一个数据集下有多少个文件夹,就是说有多少个人,多少个类别 nrof_classes = len(classes) count=0 files = open("train_l

Python实现平行坐标图的两种方法小结

平行坐标图,一种数据可视化的方式.以多个垂直平行的坐标轴表示多个维度,以维度上的刻度表示在该属性上对应值,相连而得的一个折线表示一个样本,以不同颜色区分类别. 但是很可惜,才疏学浅,没办法在Python里实现不同颜色来区分不同的类别.如果对此比较在意的大神可以不要往下看了......... 上图是一个基于iris数据集所画的一个平行坐标图. 隔开隔开.......................................隔开隔开 不多扯了,下面正式上代码 方法一.基于pyecharts第三

python读取并写入mat文件的方法

先给大家介绍下python读取并写入mat文件的方法 用matlab生成一个示例mat文件: clear;clc matrix1 = magic(5); matrix2 = magic(6); save matData.mat 用python3读取并写入mat文件: import scipy.io data = scipy.io.loadmat('matData.mat') # 读取mat文件 # print(data.keys()) # 查看mat文件中的所有变量 print(data['ma

Python 图像对比度增强的几种方法(小结)

图像处理工具--灰度直方图 灰度直方图时图像灰度级的函数,用来描述每个灰度级在图像矩阵中的像素个数或者占有率. 例子:矩阵 图片来自网络,侵删! 上面图片的灰度直方图 python实现 #!usr/bin/env python #-*- coding:utf-8 _*- """ @author:Sui yue @describe: 灰度直方图,描述每个灰度级在图像矩阵中的像素个数或者占有率 @time: 2019/09/15 """ import