pandas Series 增加数据

Pandas DataFrame数据的更改、插入新增的列和行的方法

2019-06-23
一.更改DataFrame的某些值 1.更改DataFrame中的数据,原理是将这部分数据提取出来,重新赋值为新的数据. 2.需要注意的是,数据更改直接针对DataFrame原数据更改,操作无法撤销,如果做出更改,需要对更改条件做确认或对数据进行备份. 代码: import pandas as pd df1 = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['

Pandas:Series和DataFrame删除指定轴上数据的方法

2018-11-09
如下所示: import numpy as np import pandas as pd from pandas import Series,DataFrame 一.drop方法:产生新对象 1.Series o = Series([1,3,4,7],index=['d','c','b','a']) print(o.drop(['d','b'])) c 3 a 7 dtype: int64 2.DataFrame data = {'水果':['苹果','梨','草莓'], '数量':[3,2,5

python使用pandas处理大数据节省内存技巧(推荐)

2019-05-05
一般来说,用pandas处理小于100兆的数据,性能不是问题.当用pandas来处理100兆至几个G的数据时,将会比较耗时,同时会导致程序因内存不足而运行失败. 当然,像Spark这类的工具能够胜任处理100G至几个T的大数据集,但要想充分发挥这些工具的优势,通常需要比较贵的硬件设备.而且,这些工具不像pandas那样具有丰富的进行高质量数据清洗.探索和分析的特性.对于中等规模的数据,我们的愿望是尽量让pandas继续发挥其优势,而不是换用其他工具. 本文我们讨论pandas的内存使用,展示怎样

pandas中的数据去重处理的实现方法

2020-02-08
数据去重可以使用duplicated()和drop_duplicates()两个方法. DataFrame.duplicated(subset = None,keep ='first' )返回boolean Series表示重复行 参数:  subset:列标签或标签序列,可选 仅考虑用于标识重复项的某些列,默认情况下使用所有列 keep:{'first','last',False},默认'first' first:标记重复,True除了第一次出现. last:标记重复,True除了最后一次出现

python3 pandas 读取MySQL数据和插入的实例

2018-04-17
python 代码如下: # -*- coding:utf-8 -*- import pandas as pd import pymysql import sys from sqlalchemy import create_engine def read_mysql_and_insert(): try: conn = pymysql.connect(host='localhost',user='user1',password='123456',db='test',charset='utf8')

将pandas.dataframe的数据写入到文件中的方法

2018-12-05
导入实验常用的python包.如图2所示. [import pandas as pd]pandas用来做数据处理.[import numpy as np]numpy用来做高维度矩阵运算.[import matplotlib.pyplot as plt]matplotlib用来做数据可视化. pandas数据写入到csv文件中: [names = ['Bob','Jessica','Mary','John','Mel']]创建一个names列表[ births = [968,155,77,578,

pandas series序列转化为星期几的实例

2018-04-10
series序列中每个元素都是带有日期形式的字符串,需要将其转化为一个同等大小的series,且其中每个元素都是星期几. 1)将Series转化为datetime格式: 2)将Series中每个元素转化为星期: time_list = ["2017-05-10 17:19:19", "2017-05-11 17:19:20", "2017-05-12 17:19:20", "2017-05-13 17:19:20"] time

对pandas处理json数据的方法详解

2019-02-08
今天展示一个利用pandas将json数据导入excel例子,主要利用的是pandas里的read_json函数将json数据转化为dataframe. 先拿出我要处理的json字符串: strtext='[{"ttery":"min","issue":"20130801-3391","code":"8,4,5,2,9","code1":"297734529

浅谈Pandas:Series和DataFrame间的算术元素

2018-12-22
如下所示: import numpy as np import pandas as pd from pandas import Series,DataFrame 一.Series与Series s1 = Series([1,3,5,7],index=['a','b','c','d']) s2 = Series([2,4,6,8],index=['a','b','c','e']) 索引对齐项相加,不对齐项的值取NaN s1+s2 1 a 3.0 b 7.0 c 11.0 d NaN e NaN d

Python利用pandas处理Excel数据的应用详解

2019-06-17
最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做自动化测试的时候,如果涉及到数据的读取和存储,那么而利用pandas就会非常高效,基本上3行代码可以搞定你20行代码的操作!该教程仅仅限于结合柠檬班的全栈自动化测试课程来讲解下pandas在项目中的应用,这仅仅只是冰山一角,希望大家可以踊跃的去尝试和探索! 一.安装环境: 1:pandas依赖处理Excel的xlrd模块,所以我们需要提前安装这个,安装命令

浅谈Pandas Series 和 Numpy array中的相同点

2019-06-27
相同点: 可以利用中括号获取元素 s[0] 可以的得到单个元素 或 一个元素切片 s[3,7] 可以遍历 for x in s 可以调用同样的函数获取最大最小值 s.mean()  s.max() 可以用向量运算 <1 + s> 和Numpy一样, Pandas Series 也是用C语言, 因此它比Python列表的运算更快 以上这篇浅谈Pandas Series 和 Numpy array中的相同点就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

pandas取出重复数据的方法

2019-07-02
drop_duplicates为我们提供了数据去重的方法,那怎么得到哪些数据有重复呢? 实现步骤: 1.采用drop_duplicates对数据去两次重,一次将重复数据全部去除(keep=False)记为data1,另一次将重复数据保留一个(keep='first)记为data2; 2.求data1和data2的差集即可:data2.append(data1).drop_duplicates(keep=False) 以上这篇pandas取出重复数据的方法就是小编分享给大家的全部内容了,希望能给大

python3使用pandas获取股票数据的方法

2018-12-22
如下所示: from pandas_datareader import data, wb from datetime import datetime import matplotlib.pyplot as plt end = datetime.now() start = datetime(end.year - 1, end.month, end.day) alibaba = data.DataReader('BABA', 'yahoo', start, end) alibaba['Adj Clo

在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例

2019-01-26
最近在工作中,遇到了数据合并.连接的问题,故整理如下,供需要者参考~ 一.concat:沿着一条轴,将多个对象堆叠到一起 concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接.与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果. concat(objs, axis=0, join='outer', join_axes=None, ignore_ind

Pandas读取MySQL数据到DataFrame的方法

2018-07-22
方法一: #-*- coding:utf-8 -*- from sqlalchemy import create_engine class mysql_engine(): user='******' passwd='******' host='******' port = '******' db_name='******' engine = create_engine('mysql://{0}:{1}@{2}:{3}/{4}?charset=utf8'.format(user,passwd,ho

使用pandas实现连续数据的离散化处理方式(分箱操作)

2019-11-21
Python实现连续数据的离散化处理主要基于两个函数,pandas.cut和pandas.qcut,前者根据指定分界点对连续数据进行分箱处理,后者则可以根据指定箱子的数量对连续数据进行等宽分箱处理,所谓等宽指的是每个箱子中的数据量是相同的. 下面简单介绍一下这两个函数的用法: # 导入pandas包 import pandas as pd ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32] # 待分箱数据 bins = [18, 25,

python使用pandas抽样训练数据中某个类别实例

2020-02-27
废话真的一句也不想多说,直接看代码吧! # -*- coding: utf-8 -*- import numpy from sklearn import metrics from sklearn.svm import LinearSVC from sklearn.naive_bayes import MultinomialNB from sklearn import linear_model from sklearn.datasets import load_iris from sklearn.

详解pandas删除缺失数据(pd.dropna()方法)

2019-06-22
1.创建带有缺失值的数据库: import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index = list('abcde'), columns = ['one', 'two', 'three']) # 随机产生5行3列的数据 df.ix[1, :-1] = np.nan # 将指定数据定义为缺失 df.ix[1:-1, 2] = np.nan print('\ndf1') # 输出df1,

pandas进行时间数据的转换和计算时间差并提取年月日

2019-07-04
#pd.to_datetime函数 #读取数据 import pandas as pd data = pd.read_csv('police.csv') #将stop_date转化为datetime的格式的dataframe,存到stop_datetime data['stop_datetime'] = pd.to_datetime(data.stop_date') #自定义一个时间,计算时间差 data_new = pd.to_datetime('2006-01-01') data['time

详解pandas的外部数据导入与常用方法

2019-04-30
外部数据导入 导入excel文件 pandas导入excel用read_excel()方法: import pandas as pd excel_file1 = pd.read_excel('data/测试.xlsx',encoding='utf-8') 姓名  年龄    工作    工资 0   张三  25    学生      200 1   李四  24    工人     3000 2   王伟  28    NaN      5000 3  王二毛  22  自由职业   6000

javascript 手动给表增加数据的小例子

2013-07-08
先建一个页面如下:这里有两个表,上面一个有数据,下面一个没有数据,只有一个表头!  复制代码 代码如下: <body>     <form id="form1" runat="server">     <div>     <table border='1px' width="500px" id="tables">     <tr>     <td>1<