pytorch梯度消失可视化

  • pytorch对梯度进行可视化进行梯度检查教程

    目的: 在训练神经网络的时候,有时候需要自己写操作,比如faster_rcnn中的roi_pooling,我们可以可视化前向传播的图像和反向传播的梯度图像,前向传播可以检查流程和计算的正确性,而反向传 ...

  • pytorch 权重weight 与 梯度grad 可视化操作

    pytorch 权重weight 与 梯度grad 可视化 查看特定layer的权重以及相应的梯度信息 打印模型 观察到model下面有module的key,module下面有features的key ...

  • PyTorch: 梯度下降及反向传播的实例详解

    线性模型 线性模型介绍 线性模型是很常见的机器学习模型,通常通过线性的公式来拟合训练数据集.训练集包括(x,y),x为特征,y为目标.如下图: 将真实值和预测值用于构建损失函数,训练的目标是最小化这个 ...

  • pytorch梯度剪裁方式

    我就废话不多说,看例子吧! import torch.nn as nn outputs = model(data) loss= loss_fn(outputs, target) optimizer.z ...

  • pytorch 梯度NAN异常值的解决方案

    pytorch 梯度NAN异常值 gradient 为nan可能原因: 1.梯度爆炸 2.学习率太大 3.数据本身有问题 4.backward时,某些方法造成0在分母上, 如:使用方法sqrt() 定 ...

  • 人工智能学习Pytorch梯度下降优化示例详解

    目录 一.激活函数 1.Sigmoid函数 2.Tanh函数 3.ReLU函数 二.损失函数及求导 1.autograd.grad 2.loss.backward() 3.softmax及其求导 三. ...

  • PyTorch梯度裁剪避免训练loss nan的操作

    近来在训练检测网络的时候会出现loss为nan的情况,需要中断重新训练,会很麻烦.因而选择使用PyTorch提供的梯度裁剪库来对模型训练过程中的梯度范围进行限制,修改之后,不再出现loss为nan的情 ...

  • PyTorch梯度下降反向传播

    前言: 反向传播的目的是计算成本函数C对网络中任意w或b的偏导数.一旦我们有了这些偏导数,我们将通过一些常数 α的乘积和该数量相对于成本函数的偏导数来更新网络中的权重和偏差.这是流行的梯度下降算法.而 ...

  • pytorch损失反向传播后梯度为none的问题

    错误代码:输出grad为none a = torch.ones((2, 2), requires_grad=True).to(device) b = a.sum() b.backward() prin ...

  • PyTorch策略梯度算法详情

    目录 0. 前言 1. 策略梯度算法 2. 使用策略梯度算法解决CartPole问题 0. 前言 本节中,我们使用策略梯度算法解决 CartPole 问题.虽然在这个简单问题中,使用随机搜索策略和爬山 ...

  • pytorch之深度神经网络概念全面整理

    目录 1.神经网络训练过程 2.基础概念 2.1数学知识 2.1.1导数 2.1.2 梯度 2.2前向传播和反向传播 3.数据预处理手段 3.1 归一化  (normalization) 3.2 标准 ...

  • PyTorch的Debug指南

    一.ipdb 介绍 很多初学 python 的同学会使用 print 或 log 调试程序,但是这只在小规模的程序下调试很方便,更好的调试应该是在一边运行的时候一边检查里面的变量和方法. 感兴趣的可以 ...

  • Pytorch训练网络过程中loss突然变为0的解决方案

    问题 // loss 突然变成0 python train.py -b=8 INFO: Using device cpu INFO: Network: 1 input channels 7 outpu ...

  • Pytorch 如何实现LSTM时间序列预测

    开发环境说明: Python 35 Pytorch 0.2 CPU/GPU均可 1.LSTM简介 人类在进行学习时,往往不总是零开始,学习物理你会有数学基础.学习英语你会有中文基础等等. 于是对于机器 ...

  • pytorch实现ResNet结构的实例代码

    pytorch实现ResNet结构的实例代码

  • pytorch中LN(LayerNorm)及Relu和其变相的输出操作

    主要就是了解一下pytorch中的使用layernorm这种归一化之后的数据变化,以及数据使用relu,prelu,leakyrelu之后的变化. import torch import torch. ...

  • 基于PyTorch实现一个简单的CNN图像分类器

    pytorch中文网:https://www.pytorchtutorial.com/ pytorch官方文档:https://pytorch.org/docs/stable/index.html 一 ...

  • Pytorch中Softmax与LogSigmoid的对比分析

    Pytorch中Softmax与LogSigmoid的对比 torch.nn.Softmax 作用: 1.将Softmax函数应用于输入的n维Tensor,重新改变它们的规格,使n维输出张量的元素位于 ...

  • yolov5特征图可视化的使用步骤

    目录 前言 一.效果图 二.使用步骤 1.使用方法 2.注意事项 总结 参考 前言 最近写论文需要观察中间特征层的特征图,使用的是yolov5的代码仓库,但是苦于找不到很好的轮子,于是参考了很多,只找 ...

  • 聊聊基于pytorch实现Resnet对本地数据集的训练问题

    目录 1.dataset.py(先看代码的总体流程再看介绍) 2.network.py 3.train.py 4.结果与总结 本文是使用pycharm下的pytorch框架编写一个训练本地数据集的Re ...

  • 2025-11-09

    随机推荐