tensorflow 设置input_name
-
TensorFlow查看输入节点和输出节点名称方式
TensorFlow 定义输入节点名称input_name: with tf.name_scope('input'): bottleneck_input = tf.placeholder_with_d ...
-
Tensorflow设置显存自适应,显存比例的操作
Tensorfow框架下,在模型运行时,设置对显存的占用. 1. 按比例 config = tf.ConfigProto() config.gpu_options.per_process_gpu_me ...
-
TensorFlow设置日志级别的几种方式小结
TensorFlow中的log共有INFO.WARN.ERROR.FATAL 4种级别.有以下几种设置方式. 1. 通过设置环境变量控制log级别 可以通过环境变量TF_CPP_MIN_LOG_LEV ...
-
keras的backend 设置 tensorflow,theano操作
win7 系统环境安装步骤: 1.首先是安装Python,建议安装anaconda 2.安装完anaconda后打开anaconda promp命令行promp,输入conda list. 可以看到已 ...
-
Tensorflow全局设置可见GPU编号操作
笔者需要tensorflow仅运行在一个GPU上(机器本身有多GPU),而且需要依据系统参数动态调节,故无法简单使用CUDA_VISIBLE_DEVICES. 一种方式是全局使用tf.device函数 ...
-
在tensorflow中设置保存checkpoint的最大数量实例
在tensorflow中设置保存checkpoint的最大数量实例
-
tensorflow指定GPU与动态分配GPU memory设置
在tensorflow中,默认指定占用所有的GPU,如需指定占用的GPU,可以在命令行中: export CUDA_VISIBLE_DEVICES=1 这样便是只占用1号GPU,通过命令 nvidia ...
-
tensorflow 环境变量设置方式
安装TensorFlow后,在Python中输入 import tensorflow as tf 时 提示一下类似错误 ImportError: libcusolver.so.*.0: cannot ...
-
Tensorflow 多线程设置方式
一. 通过 ConfigProto 设置多线程 (具体参数功能及描述见 tensorflow/core/protobuf/config.proto) 在进行 tf.ConfigProto() 初始化时 ...
-
tensorflow:指定gpu 限制使用量百分比,设置最小使用量的实现
在Python代码中指定GPU import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" 设置定量的GPU使用量: ...
-
在tensorflow中设置使用某一块GPU、多GPU、CPU的操作
tensorflow下设置使用某一块GPU(从0开始编号): import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_I ...
-
解决Keras TensorFlow 混编中 trainable=False设置无效问题
这是最近碰到一个问题,先描述下问题: 首先我有一个训练好的模型(例如vgg16),我要对这个模型进行一些改变,例如添加一层全连接层,用于种种原因,我只能用TensorFlow来进行模型优化,tf的优化 ...
-
浅谈多卡服务器下隐藏部分 GPU 和 TensorFlow 的显存使用设置
服务器有多张显卡,一般是组里共用,分配好显卡和任务就体现公德了.除了在代码中指定使用的 GPU 编号,还可以直接设置可见 GPU 编号,使程序/用户只对部分 GPU 可见. 操作很简单,使用环境变量 ...
-
TensorFlow和keras中GPU使用的设置操作
TensorFlow和keras中GPU使用的设置操作
-
TensorFlow安装及jupyter notebook配置方法
tensorflow利用anaconda在ubuntu下安装方法及jupyter notebook运行目录及远程访问配置 Ubuntu下安装Anaconda bash ~/file_path/file ...
-
使用tensorflow实现AlexNet
AlexNet是2012年ImageNet比赛的冠军,虽然过去了很长时间,但是作为深度学习中的经典模型,AlexNet不但有助于我们理解其中所使用的很多技巧,而且非常有助于提升我们使用深度学习工具箱的 ...
-
TensorFlow在MAC环境下的安装及环境搭建
给大家分享一下TensorFlow在MAC系统中的安装步骤以及环境搭建的操作流程. TensorFlow 底层的图模型结构清晰,容易改造:支持分布式训练:可视化效果好.如果做长期项目,接触较大数据集的 ...
-
详解Tensorflow数据读取有三种方式(next_batch)
Tensorflow数据读取有三种方式: Preloaded data: 预加载数据 Feeding: Python产生数据,再把数据喂给后端. Reading from file: 从文件中直接读取 ...
-
python使用tensorflow保存、加载和使用模型的方法
使用Tensorflow进行深度学习训练的时候,需要对训练好的网络模型和各种参数进行保存,以便在此基础上继续训练或者使用.介绍这方面的博客有很多,我发现写的最好的是这一篇官方英文介绍: http:// ...
-
用十张图详解TensorFlow数据读取机制(附代码)
在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下 ...
-
Tensorflow 利用tf.contrib.learn建立输入函数的方法
在实际的业务中,可能会遇到很大量的特征,这些特征良莠不齐,层次不一,可能有缺失,可能有噪声,可能规模不一致,可能类型不一样,等等问题都需要我们在建模之前,先预处理特征或者叫清洗特征.那么这清洗特征的过 ...