利用PyQt5+Matplotlib 绘制静态/动态图的实现代码

代码编辑环境

Win10+(Pycharmm or Vscode)+PyQt 5.14.2

功能实现

静态作图:数据作图,取决于作图函数,可自行修改
动态作图:产生数据,获取并更新数据,最后刷新显示,可用于实现数据实时采集并显示的场景

效果展示

代码块(业务与逻辑分离)业务–UI界面代码

文件名:Ui_realtimer_plot.py

# -*- coding: utf-8 -*-
# Added by the Blog author VERtiCaL on 2020/07/12 at SSRF
# Created by: PyQt5 UI code generator 5.14.2
#
# WARNING! All changes made in this file will be lost!

from PyQt5 import QtCore, QtGui, QtWidgets

class Ui_MainWindow(object):
  def setupUi(self, MainWindow):
    MainWindow.setObjectName("MainWindow")
    MainWindow.resize(1613, 1308)
    self.centralwidget = QtWidgets.QWidget(MainWindow)
    self.centralwidget.setObjectName("centralwidget")
    self.Plot_static = QtWidgets.QGroupBox(self.centralwidget)
    self.Plot_static.setGeometry(QtCore.QRect(260, 30, 861, 391))
    self.Plot_static.setObjectName("Plot_static")
    self.layoutWidget = QtWidgets.QWidget(self.centralwidget)
    self.layoutWidget.setGeometry(QtCore.QRect(300, 830, 701, 91))
    self.layoutWidget.setObjectName("layoutWidget")
    self.horizontalLayout = QtWidgets.QHBoxLayout(self.layoutWidget)
    self.horizontalLayout.setContentsMargins(0, 0, 0, 0)
    self.horizontalLayout.setSpacing(28)
    self.horizontalLayout.setObjectName("horizontalLayout")
    self.Static_plot = QtWidgets.QPushButton(self.layoutWidget)
    sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.MinimumExpanding)
    sizePolicy.setHorizontalStretch(0)
    sizePolicy.setVerticalStretch(0)
    sizePolicy.setHeightForWidth(self.Static_plot.sizePolicy().hasHeightForWidth())
    self.Static_plot.setSizePolicy(sizePolicy)
    font = QtGui.QFont()
    font.setFamily("楷体")
    font.setPointSize(18)
    font.setBold(False)
    font.setWeight(50)
    self.Static_plot.setFont(font)
    self.Static_plot.setObjectName("Static_plot")
    self.horizontalLayout.addWidget(self.Static_plot)
    self.dynamic_plot = QtWidgets.QPushButton(self.layoutWidget)
    sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.MinimumExpanding)
    sizePolicy.setHorizontalStretch(0)
    sizePolicy.setVerticalStretch(0)
    sizePolicy.setHeightForWidth(self.dynamic_plot.sizePolicy().hasHeightForWidth())
    self.dynamic_plot.setSizePolicy(sizePolicy)
    font = QtGui.QFont()
    font.setFamily("楷体")
    font.setPointSize(18)
    font.setBold(False)
    font.setWeight(50)
    self.dynamic_plot.setFont(font)
    self.dynamic_plot.setObjectName("dynamic_plot")
    self.horizontalLayout.addWidget(self.dynamic_plot)
    self.End_plot = QtWidgets.QPushButton(self.layoutWidget)
    sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.MinimumExpanding)
    sizePolicy.setHorizontalStretch(0)
    sizePolicy.setVerticalStretch(0)
    sizePolicy.setHeightForWidth(self.End_plot.sizePolicy().hasHeightForWidth())
    self.End_plot.setSizePolicy(sizePolicy)
    font = QtGui.QFont()
    font.setFamily("楷体")
    font.setPointSize(18)
    self.End_plot.setFont(font)
    self.End_plot.setObjectName("End_plot")
    self.horizontalLayout.addWidget(self.End_plot)
    self.Erase_plot = QtWidgets.QPushButton(self.layoutWidget)
    sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.MinimumExpanding)
    sizePolicy.setHorizontalStretch(0)
    sizePolicy.setVerticalStretch(0)
    sizePolicy.setHeightForWidth(self.Erase_plot.sizePolicy().hasHeightForWidth())
    self.Erase_plot.setSizePolicy(sizePolicy)
    font = QtGui.QFont()
    font.setFamily("楷体")
    font.setPointSize(18)
    self.Erase_plot.setFont(font)
    self.Erase_plot.setObjectName("Erase_plot")
    self.horizontalLayout.addWidget(self.Erase_plot)
    self.Plot_dynamic = QtWidgets.QGroupBox(self.centralwidget)
    self.Plot_dynamic.setGeometry(QtCore.QRect(260, 430, 861, 391))
    self.Plot_dynamic.setObjectName("Plot_dynamic")
    MainWindow.setCentralWidget(self.centralwidget)
    self.menubar = QtWidgets.QMenuBar(MainWindow)
    self.menubar.setGeometry(QtCore.QRect(0, 0, 1613, 23))
    self.menubar.setObjectName("menubar")
    MainWindow.setMenuBar(self.menubar)
    self.statusbar = QtWidgets.QStatusBar(MainWindow)
    self.statusbar.setObjectName("statusbar")
    MainWindow.setStatusBar(self.statusbar)

    self.retranslateUi(MainWindow)
    QtCore.QMetaObject.connectSlotsByName(MainWindow)

  def retranslateUi(self, MainWindow):
    _translate = QtCore.QCoreApplication.translate
    MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow"))
    self.Plot_static.setTitle(_translate("MainWindow", "StaticPlot"))
    self.Static_plot.setText(_translate("MainWindow", "静态作图"))
    self.dynamic_plot.setText(_translate("MainWindow", "动态作图"))
    self.End_plot.setText(_translate("MainWindow", "停止作图"))
    self.Erase_plot.setText(_translate("MainWindow", "清除数据"))
    self.Plot_dynamic.setTitle(_translate("MainWindow", "DynamicPlot"))

逻辑–主要代码分析

matplotlib作图嵌入PyQt界面的关键

创建matlibplot图形类Myplot,通过继承FigureCanvas类,使其相当于PyQt里的控件,从而完成PyQt与Matlibplot的结合。

# class Myplot for plotting with matplotlib
class Myplot(FigureCanvas):
  def __init__(self, parent=None, width=5, height=3, dpi=100):
    # normalized for 中文显示和负号
    plt.rcParams['font.sans-serif'] = ['SimHei']
    plt.rcParams['axes.unicode_minus'] = False

    # new fig
    self.fig = Figure(figsize=(width, height), dpi=dpi)
    # activate figure window
    # super(Plot_dynamic,self).__init__(self.fig)
    FigureCanvas.__init__(self, self.fig)
    self.setParent(parent)
    # sub plot by self.axes
    self.axes= self.fig.add_subplot(111)
    # initial figure
    self.compute_initial_figure()

    # size policy
    FigureCanvas.setSizePolicy(self,
                  QtWidgets.QSizePolicy.Expanding,
                  QtWidgets.QSizePolicy.Expanding)
    FigureCanvas.updateGeometry(self)

  def compute_initial_figure(self):
    pass

用于图形初始化的图像类,通过调用这个类就能实现图形绘制和修改。可以在此更改图形的类型,具体代码可以参照matplotlib官网的实例 Matplotlib_examples

class static_fig(Myplot):
  def __init__(self,*args,**kwargs):
    Myplot.__init__(self,*args,**kwargs)

  def compute_initial_figure(self):
    x=np.linspace(0,2*np.pi,100)
    y=x*np.sin(x)
    self.axes.plot(x,y)
    self.axes.set_title("signals")
    self.axes.set_xlabel("delay(s)")
    self.axes.set_ylabel("counts")

主界面的逻辑代码

几点说明

1、利用Matplotlib自带的NavigationToolbar可以实现绘制图的基本操作:平移、放大、保存图像、显示鼠标位置(x,y)的数据等
2、self.gridlayout1.addWidget(self.fig1)就是把绘制的图像本身作为一个控件widget加入UI界面里的groupbox(这里改成Plot_static名称)去,从而使得图形能正常显示在绘图框里。

class AppWindow(QMainWindow,Ui_MainWindow):
  def __init__(self,parent=None):
    super(AppWindow,self).__init__(parent)
    self.setupUi(self)
    # ^O^ static_fig can changed to any other function
    #self.fig1=static_fig(width=5, height=4, dpi=100)
    self.fig1 = static_fig(width=5, height=3, dpi=72)
    self.fig2 = dynamic_fig(width=5, height=3, dpi=72)
    # add NavigationToolbar in the figure (widgets)
    self.fig_ntb1 = NavigationToolbar(self.fig1, self)
    self.fig_ntb2 = NavigationToolbar(self.fig2, self)
    #self.Start_plot.clicked.connect(self.plot_cos)
    # add the static_fig in the Plot box
    self.gridlayout1=QGridLayout(self.Plot_static)
    self.gridlayout1.addWidget(self.fig1)
    self.gridlayout1.addWidget(self.fig_ntb1)
    # add the dynamic_fig in the Plot box
    self.gridlayout2 = QGridLayout(self.Plot_dynamic)
    self.gridlayout2.addWidget(self.fig2)
    self.gridlayout2.addWidget(self.fig_ntb2)
    self._timer = QTimer(self)
    self._t = 1
    self._counts = []
    self._delay_t = []

静态做图

self.fig1.axes.cla()清除原来的图像,self.fig1.axes.plot(self.t,self.y),通过self.fig1.axes.plot实现做图,不同类型的图形做图参考matplotlib官网。 Matplotlib_examples

@pyqtSlot()
  def on_Static_plot_clicked(self):
    self.plot_cos()
    self._Static_on=1
    #self.Start_plot.setEnabled(False)

  global nc
  nc=1
  def plot_cos(self):
    #print('nc=%d\n' %self.nc)
    global nc
    nc+=1
    self.fig1.axes.cla()
    self.t=np.arange(0,15,0.1)
    self.y=2*nc*self.t-self.t*np.cos(self.t/2/np.pi*1000)
    self.fig1.axes.plot(self.t,self.y)
    self.fig1.axes.set_title("signals",fontsize=18,color='c')
    self.fig1.axes.set_xlabel("delay(s)",fontsize=18,color='c')
    self.fig1.axes.set_ylabel("counts",fontsize=18,color='c')
    self.fig1.draw()

动态做图

这里数据接收通过QTimer来延迟时间(隔1s)并通过函数产生计数,append更新数据,做图,刷新图像,self.fig2.draw()实现图像绘制。

@pyqtSlot()
  def on_dynamic_plot_clicked(self):
    print('start dynamic ploting')
    self.Static_plot.setEnabled(False)
    self.dynamic_plot.setEnabled(False)
    # start update figure every 1s; flag "update_on" : 1 is on and 0 is Off
    self._update_on = 1
    self._timer.timeout.connect(self.update_fig)
    self._timer.start(1000) # plot after 1s delay

  def update_fig(self):
    self._t+=1
    print(self._t)
    self._delay_t.append(self._t)
    print(self._delay_t)
    #new_counts=random.randint(100,900)
    new_counts= 2 * self._t - self._t * np.cos(self._t / 2 / np.pi * 1000)
    self._counts.append(new_counts)
    print(self._counts)
    self.fig2.axes.cla()
    self.fig2.axes.plot(self._delay_t,self._counts,'-ob')
    self.fig2.axes.set_title("signals",fontsize=18,color='c')
    self.fig2.axes.set_xlabel("delay(s)",fontsize=18,color='c')
    self.fig2.axes.set_ylabel("counts",fontsize=18,color='c')
    self.fig2.draw()

改进说明

后续可以通过引入多线程,单独进行数据采集、显示和保存,完善功能。

最终完整代码

# -*- coding: utf-8 -*-

"""
Module: plot data realtime.
Created on 2020/07/12 by Blog Author VERtiCaL at SSRF
"""

import matplotlib
matplotlib.use("Qt5Agg")
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt5 import NavigationToolbar2QT as NavigationToolbar
from PyQt5 import QtCore, QtWidgets
from PyQt5.QtWidgets import QWidget, QPushButton, QApplication,QMainWindow,QGridLayout
from PyQt5.QtCore import QTimer,pyqtSlot,QThread
from matplotlib.figure import Figure
import matplotlib.pyplot as plt
import numpy as np
import sys,random, time,os,re
from Ui_Realtimer_Plot import Ui_MainWindow

# class Myplot for plotting with matplotlib
class Myplot(FigureCanvas):
  def __init__(self, parent=None, width=5, height=3, dpi=100):
    # normalized for 中文显示和负号
    plt.rcParams['font.sans-serif'] = ['SimHei']
    plt.rcParams['axes.unicode_minus'] = False

    # new figure
    self.fig = Figure(figsize=(width, height), dpi=dpi)
    # activate figure window
    # super(Plot_dynamic,self).__init__(self.fig)
    FigureCanvas.__init__(self, self.fig)
    self.setParent(parent)
    #self.fig.canvas.mpl_connect('button_press_event', self)
    # sub plot by self.axes
    self.axes= self.fig.add_subplot(111)
    # initial figure
    self.compute_initial_figure()

    # size policy
    FigureCanvas.setSizePolicy(self,
                  QtWidgets.QSizePolicy.Expanding,
                  QtWidgets.QSizePolicy.Expanding)
    FigureCanvas.updateGeometry(self)

  def compute_initial_figure(self):
    pass

# class for plotting a specific figure static or dynamic
class static_fig(Myplot):
  def __init__(self,*args,**kwargs):
    Myplot.__init__(self,*args,**kwargs)

  def compute_initial_figure(self):
    x=np.linspace(0,2*np.pi,100)
    y=x*np.sin(x)
    self.axes.plot(x,y)
    self.axes.set_title("signals")
    self.axes.set_xlabel("delay(s)")
    self.axes.set_ylabel("counts")

class dynamic_fig(Myplot):
  def __init__(self,*args,**kwargs):
    Myplot.__init__(self,*args,**kwargs)

  def compute_initial_figure(self):
    counts = [1,10]
    delay_t = [0,1]
    self.axes.plot(delay_t,counts,'-ob')
    self.axes.set_title("signals")
    self.axes.set_xlabel("delay(s)")
    self.axes.set_ylabel("counts")

# class for the application window
class AppWindow(QMainWindow,Ui_MainWindow):
  def __init__(self,parent=None):
    super(AppWindow,self).__init__(parent)
    self.setupUi(self)
    # ^O^ static_fig can changed to any other function
    #self.fig1=static_fig(width=5, height=4, dpi=100)
    self.fig1 = static_fig(width=5, height=3, dpi=72)
    self.fig2 = dynamic_fig(width=5, height=3, dpi=72)
    # add NavigationToolbar in the figure (widgets)
    self.fig_ntb1 = NavigationToolbar(self.fig1, self)
    self.fig_ntb2 = NavigationToolbar(self.fig2, self)
    #self.Start_plot.clicked.connect(self.plot_cos)
    # add the static_fig in the Plot box
    self.gridlayout1=QGridLayout(self.Plot_static)
    self.gridlayout1.addWidget(self.fig1)
    self.gridlayout1.addWidget(self.fig_ntb1)
    # add the dynamic_fig in the Plot box
    self.gridlayout2 = QGridLayout(self.Plot_dynamic)
    self.gridlayout2.addWidget(self.fig2)
    self.gridlayout2.addWidget(self.fig_ntb2)
    # initialized flags for static/dynamic plot: on is 1,off is 0
    self._timer = QTimer(self)
    self._t = 1
    self._counts = []
    self._delay_t = []
    self._Static_on=0
    self._update_on=0

  @pyqtSlot()
  def on_Static_plot_clicked(self):
    self.plot_cos()
    self._Static_on=1
    #self.Start_plot.setEnabled(False)

  global nc
  nc=1
  def plot_cos(self):
    #print('nc=%d\n' %self.nc)
    global nc
    nc+=1
    self.fig1.axes.cla()
    self.t=np.arange(0,15,0.1)
    self.y=2*nc*self.t-self.t*np.cos(self.t/2/np.pi*1000)
    self.fig1.axes.plot(self.t,self.y)
    self.fig1.axes.set_title("signals",fontsize=18,color='c')
    self.fig1.axes.set_xlabel("delay(s)",fontsize=18,color='c')
    self.fig1.axes.set_ylabel("counts",fontsize=18,color='c')
    self.fig1.draw()

  @pyqtSlot()
  def on_dynamic_plot_clicked(self):
    print('start dynamic ploting')
    self.Static_plot.setEnabled(False)
    self.dynamic_plot.setEnabled(False)
    # start update figure every 1s; flag "update_on" : 1 is on and 0 is Off
    self._update_on = 1
    self._timer.timeout.connect(self.update_fig)
    self._timer.start(1000) # plot after 1s delay

  def update_fig(self):
    self._t+=1
    print(self._t)
    self._delay_t.append(self._t)
    print(self._delay_t)
    #new_counts=random.randint(100,900)
    new_counts= 2 * self._t - self._t * np.cos(self._t / 2 / np.pi * 1000)
    self._counts.append(new_counts)
    print(self._counts)
    self.fig2.axes.cla()
    self.fig2.axes.plot(self._delay_t,self._counts,'-ob')
    self.fig2.axes.set_title("signals",fontsize=18,color='c')
    self.fig2.axes.set_xlabel("delay(s)",fontsize=18,color='c')
    self.fig2.axes.set_ylabel("counts",fontsize=18,color='c')
    self.fig2.draw()

  @pyqtSlot()
  def on_End_plot_clicked(self):
    if self._update_on==1:
      self._update_on=0
      self._timer.timeout.disconnect(self.update_fig)
      self.dynamic_plot.setEnabled(True)
    else:
      pass

  @pyqtSlot()
  def on_Erase_plot_clicked(self):
    self.fig1.axes.cla()
    self.fig1.draw()
    self.fig2.axes.cla()
    self.fig2.draw()
    if self._update_on==1:
      self._update_on=0
      self._delay_t=[]
      self._counts=[]
      self.fig2.axes.cla()
      self.fig2.draw()
      self._timer.timeout.disconnect(self.update_fig)
      self.dynamic_plot.setEnabled(True)
    else:
      pass
    self.Static_plot.setEnabled(True)
    #self.Erase_plot.setEnabled(False)

if __name__=="__main__":
  app = QApplication(sys.argv)
  win = AppWindow()
  win.show()
  sys.exit(app.exec_())

到此这篇关于利用PyQt5+Matplotlib 绘制静态/动态图的实现代码的文章就介绍到这了,更多相关PyQt5+Matplotlib静态/动态图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pyqt5与matplotlib的完美结合实例

    具体用到了matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg 直接上代码(这里给出的只是一个简单的框架,告诉你怎么去写): # -*- coding: utf-8 -*- ''' TODO:LQD ''' import sys import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_qt5agg import FigureCanva

  • 利用PyQt5+Matplotlib 绘制静态/动态图的实现代码

    代码编辑环境 Win10+(Pycharmm or Vscode)+PyQt 5.14.2 功能实现 静态作图:数据作图,取决于作图函数,可自行修改 动态作图:产生数据,获取并更新数据,最后刷新显示,可用于实现数据实时采集并显示的场景 效果展示 代码块(业务与逻辑分离)业务–UI界面代码 文件名:Ui_realtimer_plot.py # -*- coding: utf-8 -*- # Added by the Blog author VERtiCaL on 2020/07/12 at SSR

  • 利用Python matplotlib绘制风能玫瑰图

    概述 在之前的风资源分析文章中,有提到过用widrose包来进行玫瑰图的绘制,目前的可视化绘图包有很多,但是最基础和底层的,本人认为还是matplotlib,有时候为了画1-2个图就去安装一个包,好麻烦,我就是个安装软件的渣渣,所以,推己及人,我也研究了一下,matplotlib画玫瑰图的方法,废话不多说,开始咯~~~ 风能玫瑰图 玫瑰图是气象科学专业统计图表,用来统计某个地区一段时期内风向.风速发生频率,又分为"风向玫瑰图"和"风速玫瑰图".本文中的玫瑰图是将风速

  • 如何利用Python matplotlib绘制雷达图

    本篇文章介绍使用matplotlib绘制雷达图. 雷达图也被称为网络图,蜘蛛图,星图,蜘蛛网图,是一个不规则的多边形.雷达图可以形象地展示相同事物的多维指标,雷达图几乎随处可见,应用场景非常多. 一.matplotlib绘制圆形雷达图 # coding=utf-8 import numpy as np import matplotlib.pyplot as plt results = [{"大学英语": 87, "高等数学": 79, "体育":

  • 基于Python+Matplotlib绘制渐变色扇形图与等高线图

    目录 渐变色扇形图 等高线 渐变色扇形图 使用 python - matplotlib 颜色地图plt.cm模块儿,来绘制出颜色渐变.更加好看的扇形图.也称彩虹图,但是也不限于彩虹图,可以选择的颜色地图(colormap)有: Paired, autumn, rainbow, gray, spring, Darks. 下边以颜色地图rainbow为例(彩虹图),写出以下代码,并展示各种颜色样式下的图像效果. import pandas as pd import numpy as np impor

  • 使用Python绘制台风轨迹图的示例代码

    参考: 1.Basemap绘制中国地图 2.Basemap生成的图中绘制轨迹 使用CMA热带气旋最佳路径数据集,对我国周边的台风进行绘制 import re import os import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap path=r"E:\Computer Science\数学建模\第二次模拟赛题\附件" files= os.listdir(pa

  • Python使用matplotlib绘制随机漫步图

    本文我们来做一个简单的随机漫步数据图,进一步了解matplotlib的使用, 使用Python生成随机漫步数据,再使用matplotlib绘制出来, 随机漫步是这样行走得到的路径: 每次行走都完全是随机的,没有明确的方向,结果是由一系列随机决策决定的. 创建一个RandomWalk雷,随机的选择前进的方向,一共有三个属性,一个是存储随机漫步次数的变量,其他两个是列表,分别存储随机漫步经过的每个点的x和y坐标 下面是代码 from random import choice class Random

  • Pyecharts绘制全球流向图的示例代码

    安装 pip(3) install pyecharts 此文版本为v1.6 此文版本为v1.6 此文版本为v1.6 效果图 使用Pycharts绘制一个如上图类似的全球流向图. pyecharts里的地理图标总共有三种- Geo:地理坐标系,Map:地图,Bmap:百度地图. Map地图可以绘制全球地图,但不能绘制带有流向的效果图,所以此处需要使用Geo地理坐标系图. Geo图的类型有scatter(散点图),effectScatter(涟漪散点图),heatmap(热力图),lines(流向图

  • python调用Matplotlib绘制分布点并且添加标签

    本文实例为大家分享了Python调用Matplotlib绘制分布点添加标签的具体代码,供大家参考,具体内容如下 添加标签的目的 代码 截图 目的 上文介绍了根据图像的大小作为坐标来绘制分布点图.老大又给了我一个任务,我绘制完,每次将图保存,发给她,但是图片中的点的坐标是不能显示了,所以她让我给每个点添加个label,而且label是该点的横纵坐标. 代码 import matplotlib.pyplot as plt from numpy.random import rand import nu

  • 使用python绘制温度变化雷达图

    本文实例为大家分享了python绘制温度变化雷达图的具体代码,供大家参考,具体内容如下 假设某天某地每三个小时取样的气温为 针对温度变化趋势绘制雷达图: 代码如下: import numpy as np import matplotlib.pyplot as plt #标签 labels = np.array(['3℃','5℃','6℃','3℃','1℃','3℃','3℃','2℃']) #数据个数 dataLenth = 8 #数据 data = np.array([3,5,6,3,1,

  • python3.5绘制随机漫步图

    本文实例为大家分享了python3.5绘制随机漫步图的具体代码,供大家参考,具体内容如下 代码中我们定义两个模型,一个是RandomWalk.py模型,用于随机的选择前进方向.此模型中的RandomWalk类包含两个方法,一个是__init__(),一个是fill_walk(),后者是计算随机漫步的所有点.另外一个是rw_visual.py模型,用于绘制随机漫步图. 代码如下: RandomWalk.py from random import choice class RandomWalk():

随机推荐

其他