Python Multiprocessing多进程 使用tqdm显示进度条的实现

1.背景

在python运行一些,计算复杂度比较高的函数时,服务器端单核CPU的情况比较耗时,因此需要多CPU使用多进程加快速度

2.函数要求

笔者使用的是:pathos.multiprocessing 库,进度条显示用tqdm库,安装方法:

pip install pathos

安装完成后

from pathos.multiprocessing import ProcessingPool as Pool
from tqdm import tqdm

这边使用pathos的原因是因为,multiprocessing 库中的Pool 函数只支持单参数输入,例如 f(x) = x**2,而不能处理 f (x,y) = x+y 这类的函数

更不用说一些需要参数的函数 例如:F(x , alpha=0.5, gamma = 0.1) 这样。

3.代码

定义一个 函数 F [ X ] ,其中,输入X是可以在第一个维度上迭代的array, 大小:[ num_X, len ] , 在第一维度 num_X 上进行迭代。

def F(X,lamda=10,weight=0.05):
  res={}
  res.update(F_1(X,lamda=lamda,weight=weight))
  res.update(F_2(X,lamda=lamda,weight=weight))
  return res

x 是 F 的输出,是一个dict (字典格式)

这里的两个函数超参数 lamda 和 weight 虽然每次调用的时候值是一样的,但是还是需要放一个数组每次用于迭代。

zip_lamda = [lamda for i in range(len(X)) ]
zip_weight = [weight for i in range(len(X)) ]
with tqdm(total=len(cold_sequences)) as t:
    for i, x in enumerate(pool.imap(F,X,zip_lamda,zip_weight)):
      X[i,:] = [x[key] for key in x.keys()]
      Y[i,] = 0
      t.update()
  pool.close()
  pool.join()

4.结果

mutiprocess 加速前

mutiprocess 加速后

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

时间: 2019-08-12

Python多进程库multiprocessing中进程池Pool类的使用详解

问题起因 最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bagging ensemble!只是我没有抽样.文本不大,大概3000行,topic个数为8,于是我写了一个串行的程序,一个topic算完之后再算另一个topic.可是我在每个topic中用了GridSearchCV来调参,又要选特征又要调整regressor的参数,导致参数组合一共有1782种.我真

详细介绍Python进度条tqdm的使用

前言 有时候在使用Python处理比较耗时操作的时候,为了便于观察处理进度,这时候就需要通过进度条将处理情况进行可视化展示,以便我们能够及时了解情况.这对于第三方库非常丰富的Python来说,想要实现这一功能并不是什么难事. tqdm就能非常完美的支持和解决这些问题,可以实时输出处理进度而且占用的CPU资源非常少,支持windows.Linux.mac等系统,支持循环处理.多进程.递归处理.还可以结合linux的命令来查看处理情况,等进度展示. 大家先看看tqdm的进度条效果 安装 github

Python多进程multiprocessing.Pool类详解

multiprocessing模块 multiprocessing包是Python中的多进程管理包.它与 threading.Thread类似,可以利用multiprocessing.Process对象来创建一个进程.该进程可以允许放在Python程序内部编写的函数中.该Process对象与Thread对象的用法相同,拥有is_alive().join([timeout]).run().start().terminate()等方法.属性有:authkey.daemon(要通过start()设置)

Python multiprocessing.Manager介绍和实例(进程间共享数据)

Python中进程间共享数据,处理基本的queue,pipe和value+array外,还提供了更高层次的封装.使用multiprocessing.Manager可以简单地使用这些高级接口. Manager()返回的manager对象控制了一个server进程,此进程包含的python对象可以被其他的进程通过proxies来访问.从而达到多进程间数据通信且安全. Manager支持的类型有list,dict,Namespace,Lock,RLock,Semaphore,BoundedSemaph

Python3多进程 multiprocessing 模块实例详解

本文实例讲述了Python3多进程 multiprocessing 模块.分享给大家供大家参考,具体如下: 多进程 Multiprocessing 模块 multiprocessing 模块官方说明文档 Process 类 Process 类用来描述一个进程对象.创建子进程的时候,只需要传入一个执行函数和函数的参数即可完成 Process 示例的创建. star() 方法启动进程, join() 方法实现进程间的同步,等待所有进程退出. close() 用来阻止多余的进程涌入进程池 Pool 造

python的Tqdm模块的使用

Tqdm 是一个快速,可扩展的Python进度条,可以在 Python 长循环中添加一个进度提示信息,用户只需要封装任意的迭代器 tqdm(iterator). 我的系统是window环境,首先安装python,接下来就是pip. pip安装: 在python根目录下创建一个get-pip.py的文件,内容: https://bootstrap.pypa.io/get-pip.py 然后在CMD窗口进入python下面: 输出: python -m pip install -U pip 由于Tq

Python多进程池 multiprocessing Pool用法示例

本文实例讲述了Python多进程池 multiprocessing Pool用法.分享给大家供大家参考,具体如下: 1. 背景 由于需要写python程序, 定时.大量发送htttp请求,并对结果进行处理. 参考其他代码有进程池,记录一下. 2. 多进程 vs 多线程 c++程序中,单个模块通常是单进程,会启动几十.上百个线程,充分发挥机器性能.(目前c++11有了std::thread编程多线程很方便,可以参考我之前的博客) shell脚本中,都是多进程后台执行.({ ...} &, 可以参考

Python多进程并发(multiprocessing)用法实例详解

本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

Python文件操作函数用法实例详解

这篇文章主要介绍了Python文件操作函数用法实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 字符编码 二进制和字符之间的转换过程 --> 字符编码 ascii,gbk,shit,fuck 每个国家都有自己的编码方式 美国电脑内存中的编码方式为ascii ; 中国电脑内存中的编码方式为gbk , 美国电脑无法识别中国电脑写的程序 , 中国电脑无法识别美国电脑写的程序 现在硬盘中躺着 ascii/gbk/shit/fuck 编码的文件,

Python中optparser库用法实例详解

本文研究的主要是Python中optparser库的相关内容,具体如下. 一直以来对optparser不是特别的理解,今天就狠下心,静下心研究了一下这个库.当然了,不敢说理解的很到位,但是足以应付正常的使用了.废话不多说,开始今天的分享吧. 简介 optparse模块主要用来为脚本传递命令参数功能. 引入 在IDE中引入optparser是很方便的. from optparser import OptionParser 初始化 相对而言,初始化需要我们多注意一点点了. 因为我们有两种不同的方式来

Python标准库shutil用法实例详解

本文实例讲述了Python标准库shutil用法.分享给大家供大家参考,具体如下: shutil模块提供了许多关于文件和文件集合的高级操作,特别提供了支持文件复制和删除的功能. 文件夹与文件操作 copyfileobj(fsrc, fdst, length=16*1024): 将fsrc文件内容复制至fdst文件,length为fsrc每次读取的长度,用做缓冲区大小 fsrc: 源文件 fdst: 复制至fdst文件 length: 缓冲区大小,即fsrc每次读取的长度 import shuti

python中urllib模块用法实例详解

本文实例讲述了python中urllib模块用法.分享给大家供大家参考.具体分析如下: 一.问题: 近期公司项目的需求是根据客户提供的api,我们定时去获取数据, 之前的方案是用php收集任务存入到redis队列,然后在linux下做一个常驻进程跑某一个php文件, 该php文件就一个无限循环,判断redis队列,有就执行,没有就break. 二.解决方法: 最近刚好学了一下python, python的urllib模块或许比php的curl更快,而且简单. 贴一下代码 复制代码 代码如下: #

python函数装饰器用法实例详解

本文实例讲述了python函数装饰器用法.分享给大家供大家参考.具体如下: 装饰器经常被用于有切面需求的场景,较为经典的有插入日志.性能测试.事务处理等.装饰器是解决这类问题的绝佳设计, 有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用.概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能. #! coding=utf-8 import time def timeit(func): def wrapper(a): start = time.clock() func

python中字典(Dictionary)用法实例详解

本文实例讲述了python中字典(Dictionary)用法.分享给大家供大家参考.具体分析如下: 字典(Dictionary)是一种映射结构的数据类型,由无序的"键-值对"组成.字典的键必须是不可改变的类型,如:字符串,数字,tuple:值可以为任何python数据类型. 1.新建字典 >>> dict1={} #建立一个空字典 >>> type(dict1) <type 'dict'> 2.增加字典元素:两种方法 >>&g

Python中subprocess模块用法实例详解

本文实例讲述了Python中subprocess模块用法.分享给大家供大家参考.具体如下: 执行命令: >>> subprocess.call(["ls", "-l"]) 0 >>> subprocess.call("exit 1", shell=True) 1 测试调用系统中cmd命令,显示命令执行的结果: x=subprocess.check_output(["echo", "

Python编程之多态用法实例详解

本文实例讲述了Python编程之多态用法.分享给大家供大家参考.具体分析如下: 什么是多态?顾名思义,多态就是多种表现形态的意思.它是一种机制.一种能力,而非某个关键字.它在类的继承中得以实现,在类的方法调用中得以体现.多态意味着变量并不知道引用的对象是什么,根据引用对象的不同表现不同的行为方式. 我们先看一个简单的例子,运算符多态: a=34 b=57 print(a+b) a="世界" b="你好" print(a+b) 我们不知道+法运算符左右两个变量是什么类

python中argparse模块用法实例详解

本文实例讲述了python中argparse模块用法.分享给大家供大家参考.具体分析如下: 平常在写命令行工具的时候,经常会带参数,所以用python中的argparse来实现. # -*- coding: utf-8 -*- import argparse args = "-f hello.txt -n 1 2 3 -x 100 -y b -z a -q hello @args.txt i_am_bar -h".split() # 使用@args.txt要求fromfile_pref