Python使用numpy模块创建数组操作示例

本文实例讲述了Python使用numpy模块创建数组操作。分享给大家供大家参考,具体如下:

创建数组

创建ndarray

创建数组最简单的方法就是使用array函数。它接收一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的Numpy数组。

array函数创建数组

import numpy as np
ndarray1 = np.array([1, 2, 3, 4])
ndarray2 = np.array(list('abcdefg'))
ndarray3 = np.array([[11, 22, 33, 44], [10, 20, 30, 40]])

zeros和zeros_like创建数组

用于创建数组,数组元素默认值是0. 注意:zeros_linke函数只是根据传入的ndarray数组的shape来创建所有元素为0的数组,并不是拷贝源数组中的数据.

ndarray4 = np.zeros(10)
ndarray5 = np.zeros((3, 3))
ndarray6 = np.zeros_like(ndarray5) # 按照 ndarray5 的shape创建数组
# 打印数组元素类型
print("以下为数组类型:")
print('ndarray4:', type(ndarray4))
print('ndarray5:', type(ndarray5))
print('ndarray6:', type(ndarray6))
print("-------------")
print("以下为数组元素类型:")
print('ndarray4:', ndarray4.dtype)
print('ndarray5:', ndarray5.dtype)
print('ndarray6:', ndarray6.dtype)
print("-------------")
print("以下为数组形状:")
print('ndarray4:', ndarray4.shape)
print('ndarray5:', ndarray5.shape)
print('ndarray6:', ndarray6.shape)

ones和ones_like创建数组

用于创建所有元素都为1的数组.ones_like用法同zeros_like用法

#创建数组,元素默认值是0
ndarray7 = np.ones(10)
ndarray8 = np.ones((3, 3))
#修改元素的值
ndarray8[0][1] = 999
ndarray9 = np.ones_like(ndarray5) # 按照 ndarray5 的shape创建数组

empty和empty_like创建数组

用于创建空数组,空数据中的值并不为0,而是未初始化的随机值.

ndarray10 = np.empty(5)
ndarray11 = np.empty((2, 3))
ndarray12 = np.empty_like(ndarray11)

arange创建数组

arange函数是python内置函数range函数的数组版本.

ndarray13 = np.arange(10)     #产生0-9共10个元素
ndarray14 = np.arange(10, 20)    #产生从10-19共10个元素
ndarray15 = np.arange(10, 20, 2)   #产生10 12 14 16 18, 2为step 间隔为2
print('ndarray14的形状:', ndarray14.shape) #ndarray15的长度
ndarray14.reshape((2, 5))     #将其形状改变为(2, 5) 分2部分 每份5个

eys创建对角矩阵数组

该函数用于创建一个N*N的矩阵,对角线为1,其余为0.

ndarray16 = np.eye(5)

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数组操作技巧总结》、《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python中找出numpy array数组的最值及其索引方法

    在list列表中,max(list)可以得到list的最大值,list.index(max(list))可以得到最大值对应的索引 但在numpy中的array没有index方法,取而代之的是where,其又是list没有的 首先我们可以得到array在全局和每行每列的最大值(最小值同理) >>> a = np.arange(9).reshape((3,3)) >>> a array([[0, 1, 2], [9, 4, 5], [6, 7, 8]]) >>&

  • Python numpy数组转置与轴变换

    这篇文章主要介绍了Python numpy数组转置与轴变换,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 矩阵的转置 >>> import numpy as np >>> arr=np.arange(15).reshape((3,5)) >>> arr array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) >>&

  • Python numpy.array()生成相同元素数组的示例

    如下所示: new_array = np.zeros((5,4)) for i in range(3): new_array[i] = np.array([0.25]*4) 运行结果: >>> new_array array([[0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0. ]]) 以上这篇Pytho

  • Python 取numpy数组的某几行某几列方法

    直接分析,如原矩阵如下(1): (1) 我们要截取的矩阵(取其一三行,和三四列数据构成矩阵)为如下(2): (2) 错误分析: 取 C 的1 3行,3 4 列,定义 Z = [0,2] #定义行数 d = [2,3] #定义列数 #代码 C_zd = C[z,d] 则结果为: 由结果分析取的是第一行第三列和第三行第四列的数据,并非我们想要的结果. 正确分析: C_A = c[[0,2]] #先取出想要的行数据 C_A = C_A[:,[2,3]] #再取出要求的列数据 print(C_A) #输

  • Python快速转换numpy数组中Nan和Inf的方法实例说明

    在使用numpy数组的过程中时常会出现nan或者inf的元素,可能会造成数值计算时的一些错误.这里提供一个numpy库函数的用法,使nan和inf能够最简单地转换成相应的数值. numpy.nan_to_num(x): 使用0代替数组x中的nan元素,使用有限的数字代替inf元素 使用范例: >>>import numpy as np >>> a = np.array([[np.nan,np.inf],\ ... [-np.nan,-np.inf]]) >>

  • python numpy 一维数组转变为多维数组的实例

    如下所示: import numpy new_list = [i for i in range(9)] numpy.array(new_list).reshape(3,3) 借助numpy库: 以上这篇python numpy 一维数组转变为多维数组的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • Python打开文件,将list、numpy数组内容写入txt文件中的方法

    python保存numpy数据: numpy.savetxt("result.txt", numpy_data); 保存list数据: file=open('data.txt','w') file.write(str(list_data)); file.close() 以上这篇Python打开文件,将list.numpy数组内容写入txt文件中的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 讲解Python3中NumPy数组寻找特定元素下标的两种方法

    引子 Matlab中有一个函数叫做find,可以很方便地寻找数组内特定元素的下标,即:Find indices and values of nonzero elements. 这个函数非常有用.比如,我们想计算图1中点Q(x0, y0)抛物线的最短距离.一个可以实施的方法是:计算出抛物线上所有点到Q点的距离,找到最小值,用find函数找到最小值对应的下标,即M点横坐标和纵坐标对应的元素的下标,M点到Q点的距离就是最短距离. 首先给出Matlab使用find函数实现的代码: a = linspac

  • Python使用numpy模块创建数组操作示例

    本文实例讲述了Python使用numpy模块创建数组操作.分享给大家供大家参考,具体如下: 创建数组 创建ndarray 创建数组最简单的方法就是使用array函数.它接收一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的Numpy数组. array函数创建数组 import numpy as np ndarray1 = np.array([1, 2, 3, 4]) ndarray2 = np.array(list('abcdefg')) ndarray3 = np.array([

  • Python使用pickle模块储存对象操作示例

    本文实例讲述了Python使用pickle模块储存对象操作.分享给大家供大家参考,具体如下: 众所周知,当我们需要储存数据的时候,就需要用到重定向.但是,这些都是储存简单的数据类型,那么当我们需要存储一个类的实例的时候该怎么存储呢? 实际上,我们需要用到一个模块---pickle,翻译为泡菜坛子 首先贴上一篇:pickle的使用方法 然后贴上一份代码: # -*- coding:utf-8 -*- import pickle class Person(): def __init__(self,

  • python使用 cx_Oracle 模块进行查询操作示例

    本文实例讲述了python使用 cx_Oracle 模块进行查询操作.分享给大家供大家参考,具体如下: # !/usr/bin/env python # -*- coding: utf-8 -*- import cx_Oracle from pprint import pprint import csv import time import re import binascii print time.ctime() try: conn = cx_Oracle.connect('tlcbuser/

  • Python使用type动态创建类操作示例

    本文实例讲述了Python使用type动态创建类操作.分享给大家供大家参考,具体如下: 使用type动态创建类 动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的. 下面看一个例子: # 定义一个Person类 class Person(object): def __init__(self): pass def say(self): print('say hello') p = Person() p.say() # 输出 say hello print(ty

  • Python基于win32ui模块创建弹出式菜单示例

    本文实例讲述了Python基于win32ui模块创建弹出式菜单.分享给大家供大家参考,具体如下: 一.代码: # -*- coding:utf-8 -*- #! python3 import win32ui import win32api from win32con import * from pywin.mfc import window class MyWnd(window.Wnd): def __init__ (self): window.Wnd.__init__(self,win32ui

  • 初识python的numpy模块

    目录 一.array类型 1.1array类型的基本使用 1.2对更高维度数据的处理 1.3Numpy创建特殊类型的array类型 1.3.1生成全为0或全为1的array 1.3.2np.arrange()和np.linspace() 1.4Numpy基础计算演示 二.线性代数相关 三.矩阵的高级函数-随机数矩阵 四.总结 Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展.Numpy是python中众多机器学习库的依赖,这些库通过Nu

  • Python使用random模块生成随机数操作实例详解

    本文实例讲述了Python使用random模块生成随机数操作.分享给大家供大家参考,具体如下: 今天在用Python编写一个小程序时,要用到随机数,于是就在网上查了一下关于Python生成各种随机数的方法,现将其总结如下: 此处,利用Python中的random模块生成随机数.因此首先必须导入该模块:import random 一. 随机产生一个元素 import random #生成一个0到1的随机浮点数: 0 <= n < 1.0 print(random.random()) >&g

  • Python中Numpy模块使用详解

    目录 NumPy ndarray对象 ​ ​Numpy数据类型​​ Numpy数组属性 NumPy NumPy(Numerical Python) 是 Python 的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Nupmy可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)).据说NumPy将Python相当于变成一种免费的更强大的MatLab系统.

  • Python使用Turtle模块绘制五星红旗代码示例

    在Udacity上课时学到了python的turtle方法,这是一个很经典的用来教小孩儿编程的图形模块,最早起源于logo语言.python本身内置了这个模块,其可视化的方法可以帮助小孩儿对编程的一些基本理念有所理解. 在作业提交的论坛里看到很多turtle画出来的精美图形,想不出什么要画的东西,于是决定拿五星红旗来练练手. 前期准备 五星红旗绘制参数 Turtle官方文档 turtle的基本操作 # 初始化屏幕 window = turtle.Screen() # 新建turtle对象实例 i

  • python的numpy模块安装不成功简单解决方法总结

    为了画个图,被numpy这个模块的安装真的折腾疯了!!!一直装不上,花了几个小时,看了网上的很多教程.方法发现总结得不是很全,这里总结一下,防止大家再出现这个问题没有解决方法. Python的魅力之一,就是拥有众多功能强大的插件,但是这些插件的寻找.安装.升级在windows系统上却非常之麻烦.首先安装完Python后需要在系统配置环境变量,接下来又要安装Setuptools,而且安装过程中还会报编码错误,对于需要拷贝源码安装的还需要去CMD里打命令,还得小心翼翼避免打错参数,如果没有一位有经验

随机推荐