java数据结构与算法之快速排序详解

本文实例讲述了java数据结构与算法之快速排序。分享给大家供大家参考,具体如下:

交换类排序的另一个方法,即快速排序。

快速排序:改变了冒泡排序中一次交换仅能消除一个逆序的局限性,是冒泡排序的一种改进;实现了一次交换可消除多个逆序。通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

步骤:

1、从数列中挑出一个元素,称为 "基准"(pivot);
2、重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3、递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法实现代码如下:

package exp_sort;
public class QuickSort {
  public static void Qsort(int array[], int left, int right) {
    int pos;
    if (left < right) {
      pos = quickSort(array, left, right);
      //递归排序
      Qsort(array, left, pos - 1);
      Qsort(array, pos + 1, right);
    }
  }
  /**
   * 一趟快速排序
   *
   * @param array
   * @param left
   * @param right
   * @return
   */
  public static int quickSort(int array[], int left, int right) {
    int low, high;
    int temp = array[left]; // 选择基准记录(枢纽元)
    low = left;
    high = right;
    while (low < high) {
      // high从右到左找小于temp的记录
      while (low < high && array[high] >= temp) {
        high--;
      }
      // 找到小于temp的记录则交换
      if (low < high) {
        array[low] = array[high];
        low++;
      }
      // low从左到右找到大于temp的记录
      while (low < high && array[low] < temp) {
        low++;
      }
      // 找到大于temp的记录,则交换
      if (low < high) {
        array[high] = array[low];
        high--;
      }
    }
    //将游标放在当前位置,此时low=high
    array[low] = temp;
    return low;
  }
  public static void main(String[] args) {
    // TODO Auto-generated method stub
    int array[] = { 38, 62, 35, 77, 55, 14, 35, 98 };
    Qsort(array, 0, 7);
    for (int i = 0; i < array.length; i++) {
      System.out.print(array[i] + " ");
    }
    System.out.println("\n");
  }
}

枢纽元的选取:

1、基本的快速排序:选取地一个元素作为枢纽元。实际中应尽量避免将第一个元素作为枢纽元(极端情况是:初始状态是已排好序或者反序的)。

2、随机化快排序 :  随机的选取枢纽元。

3、平衡快排 : 三数中值分割法:枢纽元的最好选择是数组中的中值,该中值,即左端、右端和中心位置上的三个元素的中值(推荐)。

算法分析:该算法是在实践中最快的一种排序算法,它的平均运行时间是O(N log N),该算法之所以快,主要是由于非常精炼和高度优化的内部循环。它的最坏情况的性能是O(N^2),但是这种情况可以改变。快速排序是一种分治的递归算法。该算法比归并排序算法排序快。

1、最坏情况的分析

当枢纽元是最小元素时,此时就相当于是对整个数组进行递归排序,时间复杂度为:O(N^2)

2、最好情况的分析

枢纽元正好位于中间,此时是对两个子数组进行递归排序,时间复杂度是:O(N log N),这和归并排序的分析完全相同。

3、平均情况的分析

时间复杂度是:O( N log N)

更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》

希望本文所述对大家java程序设计有所帮助。

时间: 2017-05-01

java数据结构与算法之插入排序详解

本文实例讲述了java数据结构与算法之插入排序.分享给大家供大家参考,具体如下: 复习之余,就将数据结构中关于排序的这块知识点整理了一下,写下来是想与更多的人分享,最关键的是做一备份,为方便以后查阅. 排序 1.概念: 有n个记录的序列{R1,R2,.......,Rn}(此处注意:1,2,n 是下表序列,以下是相同的作用),其相应关键字的序列是{K1,K2,.........,Kn}.通过排序,要求找出当前下标序列1,2,......,n的一种排列p1,p2,........pn,使得相应关键

浅析Java 数据结构常用接口与类

Java工具包提供了强大的数据结构.在Java中的数据结构主要包括以下几种接口和类: 枚举(Enumeration) 位集合(BitSet) 向量(Vector) 栈(Stack) 字典(Dictionary) 哈希表(Hashtable) 属性(Properties) 以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collection),我们后面再讨论. 枚举(Enumeration) 枚举(Enumeration)接口虽然它本身不属于数据结构,但它在其他数据结构的范畴里

java数据结构排序算法之归并排序详解

本文实例讲述了java数据结构排序算法之归并排序.分享给大家供大家参考,具体如下: 在前面说的那几种排序都是将一组记录按关键字大小排成一个有序的序列,而归并排序的思想是:基于合并,将两个或两个以上有序表合并成一个新的有序表 归并排序算法:假设初始序列含有n个记录,首先将这n个记录看成n个有序的子序列,每个子序列长度为1,然后两两归并,得到n/2个长度为2(n为奇数的时候,最后一个序列的长度为1)的有序子序列.在此基础上,再对长度为2的有序子序列进行亮亮归并,得到若干个长度为4的有序子序列.如此重

Java数据结构之散列表(动力节点Java学院整理)

基本概念 散列表(Hash table,也叫哈希表),是根据关键字(key value)而直接进行访问的数据结构. 说的具体点就是它通过吧key值映射到表中的一个位置来访问记录,从而加快查找的速度. 实现key值映射的函数就叫做散列函数 存放记录的数组就就叫做散列表 实现散列表的过程通常就称为散列(hashing),也就是常说的hash 散列 这里的散列的概念不仅限于数据结构了,在计算机科学领域中,散列-哈希是一种对信息的处理方法,通过某种特定的函数/算法(散列函数/hash()方法)将要检索的

Java常见基本数据结构概览

Java数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间的关系和操作等等的学科.在Java数据结构中最常用的类型无外乎以下几种: Map接口 请注意,Map没有继承Collection接口,Map提供key到value的映射.一个Map中不能包含相同的key,每个key只能映射一个value. Map接口提供3种集合的视图,Map的内容可以被当作一组key集合,一组value集合,或者一组key-value映射. List接口 List是有序的Collection,用户能

Java数据结构之图(动力节点Java学院整理)

1,摘要: 本文章主要讲解学习如何使用JAVA语言以邻接表的方式实现了数据结构---图(Graph).从数据的表示方法来说,有二种表示图的方式:一种是邻接矩阵,其实是一个二维数组:一种是邻接表,其实是一个顶点表,每个顶点又拥有一个边列表.下图是图的邻接表表示. 从图中可以看出,图的实现需要能够表示顶点表,能够表示边表.邻接表指是的哪部分呢?每个顶点都有一个邻接表,一个指定顶点的邻接表中,起始顶点表示边的起点,其他顶点表示边的终点.这样,就可以用邻接表来实现边的表示了.如顶点V0的邻接表如下: 与

java数据结构与算法之希尔排序详解

本文实例讲述了java数据结构与算法之希尔排序.分享给大家供大家参考,具体如下: 这里要介绍的是希尔排序(缩小增量排序法). 希尔排序:通过比较相距一定间隔的元素来工作:各趟比较所用的距离(增量)随着算法的进行而减小,直到只比较相邻元素的最后一趟排序为止.是插入排序的一种,是针对直接插入排序算法的改进. 算法思想:先将要排序的序列按某个增量d分成若干个子序列,对每个子序列中全部元素分别进行直接插入排序,然后再用一个较小的增量对它进行分组,在每组中再进行排序.当增量减到1时,整个要排序的数被分成一

java 算法之希尔排序详解及实现代码

java 算法之希尔排序 一.思想 希尔排序:使数组中任意间隔为h的元素都是有序的.在进行排序的时候,如果h很大,我们就能将元素移动到很远的地方,为实现更小的h有序创造方便.用这种方式,对任意以1结尾的h序列,我们都能够将数据排序: 二.概念 h有序数组:任意间隔为h的元素都是有序的数组: 三.高效原因 对于大规模乱序数组插入排序很慢,因为它只会交换相邻的元素,因此元素只能一点一点地从数组的一端移动到另一段:   希尔排序更高效的原因:它权衡了子数组的规模和有序性,在排序之初,各个子数组都很短:

C++ 算法之希尔排序详解及实例

C++ 算法之希尔排序算法详解及实例 希尔排序算法 定义: 希尔排序是插入排序的一种,也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本. 算法思想: 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序,随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰好被分为一组,算法终止. 时间复杂度: O(N) 空间复杂度: O(1) 性能: 希尔排序为不稳定算法(一次插入排序是稳定的,不会改变相同元素的相对顺序,但是在不同的插入排序中,相同的元素可能在各自的

Java经典排序算法之希尔排序详解

一.希尔排序(Shell Sort) 希尔排序(Shell Sort)是一种插入排序算法,因D.L.Shell于1959年提出而得名. Shell排序又称作缩小增量排序. 二.希尔排序的基本思想 希尔排序的中心思想就是:将数据进行分组,然后对每一组数据进行排序,在每一组数据都有序之后,就可以对所有的分组利用插入排序进行最后一次排序.这样可以显著减少交换的次数,以达到加快排序速度的目的. 希尔排序的中心思想:先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组.所有距离为dl的倍数

java 中基本算法之希尔排序的实例详解

java 中基本算法之希尔排序的实例详解 希尔排序(Shell Sort)是插入排序的一种.也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本.希尔排序是非稳定排序算法.该方法因DL.Shell于1959年提出而得名. 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序:随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止. 基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差

java数据结构与算法之桶排序实现方法详解

本文实例讲述了java数据结构与算法之桶排序实现方法.分享给大家供大家参考,具体如下: 基本思想: 假定输入是由一个随机过程产生的[0, M)区间上均匀分布的实数.将区间[0, M)划分为n个大小相等的子区间(桶),将n个输入元素分配到这些桶中,对桶中元素进行排序,然后依次连接桶输入0 ≤A[1..n] <M辅助数组B[0..n-1]是一指针数组,指向桶(链表).将n个记录分布到各个桶中去.如果有多于一个记录分到同一个桶中,需要进行桶内排序.最后依次把各个桶中的记录列出来记得到有序序列. [桶-

Java数据结构与算法之选择排序(动力节点java学院整理)

每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完. 代码 public class ChoseSort { //constructor without parameters public ChoseSort(){}; //constructor with parameters public int[] ChoseSort(int[] intArr){ for(int i=0;i<intArr.length-1;i++){ int

java数据结构与算法之奇偶排序算法完整示例

本文实例讲述了java数据结构与算法之奇偶排序算法.分享给大家供大家参考,具体如下: 算法思想: 基本思路是奇数列排一趟序,偶数列排一趟序,再奇数排,再偶数排,直到全部有序 举例吧, 待排数组[6 2 4 1 5 9] 第一次比较奇数列,奇数列与它的邻居偶数列比较,如6和2比,4和1比,5和9比 [6 2 4 1 5 9] 交换后变成 [2 6 1 4 5 9] 第二次比较偶数列,即6和1比,5和5比 [2 6 1 4 5 9] 交换后变成 [2 1 6 4 5 9] 第三趟又是奇数列,选择的是

Python实现的数据结构与算法之基本搜索详解

本文实例讲述了Python实现的数据结构与算法之基本搜索.分享给大家供大家参考.具体分析如下: 一.顺序搜索 顺序搜索 是最简单直观的搜索方法:从列表开头到末尾,逐个比较待搜索项与列表中的项,直到找到目标项(搜索成功)或者 超出搜索范围 (搜索失败). 根据列表中的项是否按顺序排列,可以将列表分为 无序列表 和 有序列表.对于 无序列表,超出搜索范围 是指越过列表的末尾:对于 有序列表,超过搜索范围 是指进入列表中大于目标项的区域(发生在目标项小于列表末尾项时)或者指越过列表的末尾(发生在目标项

java 数据结构之堆排序(HeapSort)详解及实例

1 堆排序 堆是一种重要的数据结构,分为大根堆和小根堆,是完全二叉树, 底层如果用数组存储数据的话,假设某个元素为序号为i(Java数组从0开始,i为0到n-1),如果它有左子树,那么左子树的位置是2i+1,如果有右子树,右子树的位置是2i+2,如果有父节点,父节点的位置是(n-1)/2取整.最大堆的任意子树根节点不小于任意子结点,最小堆的根节点不大于任意子结点. 所谓堆排序就是利用堆这种数据结构的性质来对数组进行排序,在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的性质可知,最大的