pandas中NaN缺失值的处理方法

本文主要介绍了pandas中NaN缺失值的处理方法,主要有两种方法,具体如下:

import pandas as pd

缺失值处理

两种方法:

  • 删除含有缺失值的样本
  • 替换/插补

处理缺失值为NaN

先判断数据中是否存在NaN,通过下面两个方法中任意一个

pd.isnull(dataframe)
# dataframe为数据
如果数据中存在NaN返回True,如果没有就返回False

pd.notnull(dataframe)
该方法与isnull相反

any()  和 all()
"""
pd.isnull(dataframe).any()
判断哪一个字段中存在缺失值没有就返回False

pd.notnull(dataframe).all()
判断哪一个字段中存在缺失值没有就返回True
"""

使用numpy也可以进行判断

import numpy as np

np.any(pd.isnull(dataframe)) # 如果返回True,说明数据中存在缺失值

np.all(pd.notnull(dataframe)) # 如果返回False, 说明数据中存在缺失值

然后进行数据处理

方式一: 删除空值行

dataframe.dropna(inplace=False)

"""
dropna() 是删除空值数据的方法, 默认将只要含有NaN的整行数据删除,
如果想要删除整行都是空值的数据需要添加how='all'参数

默认是删除整行, 如果对列做删除操作, 需要添加axis参数,
axis=1表示删除列, axis=0表示删除行

inplace: 是否在当前的dataframe中执行此操作,
True表示在原来的基础上修改,
False表示返回一个新的值, 不修改原有数据
"""

方式二: 替换/插补

dataframe.fillna('替换的值value',inplace=False)
'''
把替换NaN的值传入到fillna()中
'''

缺失值NaN有默认标记的值

比如有的空值不是NaN, 有的是一个'?'

先替换
使用numpy把"?"替换为NaN

import numpy as np

# 替换
dataframe.replace(to_replace="?", value=np.nan)

把其他的缺失值换为NaN后, 然后就按照缺失值为NaN的方式就行操作

删除数据

如果只是单独的删除数据可以使用drop()方法

DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False)

'''
代码解释:
labels : 就是要删除的行列的名字,用列表指定
index : 直接指定要删除的行
columns : 直接指定要删除的列
inplace=False : 表示返回一个新的值, 不修改原有数据
inplace=True : 表示在原来的基础上修改
'''

例:

import pandas as pd
df = pd.read_csv('/text.xlsx')
# 删除第0行和第1行
df.drop(labels=[0,1],axis=0)

# 删除列名为 age 的列
df.drop(axis=1,columns=age)

到此这篇关于pandas中NaN缺失值的处理方法的文章就介绍到这了,更多相关pandas NaN缺失值内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pandas 缺失值与空值处理的实现方法

    1.相关函数 df.dropna() df.fillna() df.isnull() df.isna() 2.相关概念 空值:在pandas中的空值是"" 缺失值:在dataframe中为nan或者naT(缺失时间),在series中为none或者nan即可 3.函数具体解释 DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False) 函数作用:删除含有空值的行或列 axis:维度,axis=

  • Python Pandas对缺失值的处理方法

    Pandas使用这些函数处理缺失值: isnull和notnull:检测是否是空值,可用于df和series dropna:丢弃.删除缺失值 axis : 删除行还是列,{0 or 'index', 1 or 'columns'}, default 0 how : 如果等于any则任何值为空都删除,如果等于all则所有值都为空才删除 inplace : 如果为True则修改当前df,否则返回新的df fillna:填充空值 value:用于填充的值,可以是单个值,或者字典(key是列名,valu

  • 详解Pandas 处理缺失值指令大全

    前言 运用pandas 库对所得到的数据进行数据清洗,复习一下相关的知识. 1 数据清洗 1.1 处理缺失数据 对于数值型数据,分为缺失值(NAN)和非缺失值,对于缺失值的检测,可以通过Python中pandas库的Series类对象的isnull方法进行检测. import pandas as pd import numpy as np string_data = pd.Series(['Benzema', 'Messi', np.nan, 'Ronaldo']) string_data.is

  • Python Pandas找到缺失值的位置方法

    问题描述: python pandas判断缺失值一般采用 isnull(),然而生成的却是所有数据的true/false矩阵,对于庞大的数据dataframe,很难一眼看出来哪个数据缺失,一共有多少个缺失数据,缺失数据的位置. 首先对于存在缺失值的数据,如下所示 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10,6)) # Make a few areas have NaN values df.

  • Python Pandas知识点之缺失值处理详解

    前言 数据处理过程中,经常会遇到数据有缺失值的情况,本文介绍如何用Pandas处理数据中的缺失值. 一.什么是缺失值 对数据而言,缺失值分为两种,一种是Pandas中的空值,另一种是自定义的缺失值. 1. Pandas中的空值有三个:np.nan (Not a Number) . None 和 pd.NaT(时间格式的空值,注意大小写不能错),这三个值可以用Pandas中的函数isnull(),notnull(),isna()进行判断. isnull()和notnull()的结果互为取反,isn

  • python解决pandas处理缺失值为空字符串的问题

    踩坑记录: 用pandas来做csv的缺失值处理时候发现奇怪BUG,就是excel打开csv文件,明明有的格子没有任何东西,当然,我就想到用pandas的dropna()或者fillna()来处理缺失值. 但是pandas读取csv文件后发现那个空的地方isnull()竟然是false,就是说那个地方有东西... 后来经过排查发现看似什么都没有的地方有空字符串,故pandas认为那儿不是缺失值,所以就不能用dropna()或者fillna()来处理. 解决思路:先用正则将空格匹配出来,然后全部替

  • 简单了解Pandas缺失值处理方法

    这篇文章主要介绍了简单了解Pandas缺失值处理方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 判断数据是否为NaN: pd.isnull(df), pd.notnull(df) 判断缺失值是否存在 np.all(pd.notnull(data)) # 返回false代表有空值 np.any(pd.isnull(data)) #返回true代表有空值 处理方式: 存在缺失值nan,并且是np.nan: 1.删除缺失值:dropna(axis

  • pandas如何处理缺失值

    在实际应用中对于数据进行分析的时候,经常能看见缺失值,下面来介绍一下如何利用pandas来处理缺失值.常见的缺失值处理方式有,过滤.填充. 一.缺失值的判断 pandas使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值,同时python内置None值也会被当作是缺失值. a.Series的缺失值判断 s = Series(["a","b",np.nan,"c",None]) print(s) ''' 0 a 1 b 2

  • pandas中NaN缺失值的处理方法

    本文主要介绍了pandas中NaN缺失值的处理方法,主要有两种方法,具体如下: import pandas as pd 缺失值处理 两种方法: 删除含有缺失值的样本 替换/插补 处理缺失值为NaN 先判断数据中是否存在NaN,通过下面两个方法中任意一个 pd.isnull(dataframe) # dataframe为数据 如果数据中存在NaN返回True,如果没有就返回False pd.notnull(dataframe) 该方法与isnull相反 any() 和 all() ""&

  • Pandas中inf值替换的方法

    目录 出现inf的原因 解决办法 PS:为了方便后续处理,可以利用numpy,将这些inf值进行替换. 使用Pandas从MySQL读取数据,在处理之后再写回到数据库时报了一个错误: sqlalchemy.exc.ProgrammingError: (MySQLdb._exceptions.ProgrammingError) inf can not be used with MySQL 很明确报错说明,是因为DataFrame中存在inf数据 出现inf的原因 在数据处理过程中用到了除法,并且出

  • Python快速转换numpy数组中Nan和Inf的方法实例说明

    在使用numpy数组的过程中时常会出现nan或者inf的元素,可能会造成数值计算时的一些错误.这里提供一个numpy库函数的用法,使nan和inf能够最简单地转换成相应的数值. numpy.nan_to_num(x): 使用0代替数组x中的nan元素,使用有限的数字代替inf元素 使用范例: >>>import numpy as np >>> a = np.array([[np.nan,np.inf],\ ... [-np.nan,-np.inf]]) >>

  • Python Pandas中缺失值NaN的判断,删除及替换

    目录 前言 1. 检查缺失值NaN 2. Pandas中NaN的类型 3. NaN的删除 dropna() 3.1 删除所有值均缺失的行/列 3.2 删除至少包含一个缺失值的行/列 3.3 根据不缺少值的元素数量删除行/列 3.4 删除特定行/列中缺少值的列/行 4. 缺失值NaN的替换(填充) fillna() 4.1 用通用值统一替换 4.2 为每列替换不同的值 4.3 用每列的平均值,中位数,众数等替换 4.4 替换为上一个或下一个值 总结 前言 当使用pandas读取csv文件时,如果元

  • Pandas中批量替换字符的六种方法总结

    目录 一.前言 二.解决过程 方法一 方法二 方法三 方法四 方法五 方法六 三.总结 一.前言 前几天在Python最强王者群有个叫[dcpeng]的粉丝问了一个关于Pandas中的问题,这里拿出来给大家分享下,一起学习. 想问一下我有一列编码为1,2,3,4的数据,如何将1批量换为“开心”,2批量换为“悲伤”这种字符替换呢? 二.解决过程 思路挺简单,限定Pandas处理,想到的方法有很多,这里拿出来给大家分享,希望对大家的学习有帮助. 下面这个是生成源数据的代码: df = pd.Data

  • 在Pandas中处理NaN值的方法

    关于NaN值 -在能够使用大型数据集训练学习算法之前,我们通常需要先清理数据, 也就是说,我们需要通过某个方法检测并更正数据中的错误. - 任何给定数据集可能会出现各种糟糕的数据,例如离群值或不正确的值,但是我们几乎始终会遇到的糟糕数据类型是缺少值. - Pandas 会为缺少的值分配 NaN 值. 创建一个具有NaN值得 Data Frame import pandas as pd # We create a list of Python dictionaries # 创建一个字典列表 ite

  • 浅谈pandas中DataFrame关于显示值省略的解决方法

    python的pandas库是一个非常好的工具,里面的DataFrame更是常用且好用,最近是越用越觉得设计的漂亮,pandas的很多细节设计的都非常好,有待使用过程中发掘. 好了,发完感慨,说一下最近DataFrame遇到的一个细节: 在使用DataFrame中有时候会遇到表格中的value显示不完全,像下面这样: In: import pandas as pd longString = u'''真正的科学家应当是个幻想家:谁不是幻想家,谁就只能把自己称为实践家.人生的磨难是很多的, 所以我们

  • python pandas中DataFrame类型数据操作函数的方法

    python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

  • Pandas中resample方法详解

    Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法. 方法的格式是: DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start',kind=None, loffset=None, limit=None, base=0) 参数详解是: 参数 说明 freq 表示重采样频率,

  • numpy 对矩阵中Nan的处理:采用平均值的方法

    尽管我们可以将所有的NaN替换成0,但是由于并不知道这些值的意义,所以这样做是个下策.如果它们是开氏温度,那么将它们置成0这种处理策略就太差劲了. 下面我们用平均值来代替缺失值,平均值根据那些非NaN得到. from numpy import * datMat = mat([[1,2,3],[4,Nan,6]]) numFeat = shape(datMat)[1] for i in range(numFeat): meanVal = mean(datMat[nonzero(~isnan(dat

随机推荐

其他