python深度学习tensorflow入门基础教程示例

目录
  • 正文
  • 1、编辑器
  • 2、常量
  • 3、变量
  • 4、占位符
  • 5、图(graph)
    • 例子1:hello world
    • 例子2:加法和乘法
    • 例子3: 矩阵乘法

正文

TensorFlow用张量这种数据结构来表示所有的数据。

用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],可以看成是方括号嵌套的层数。

1、编辑器

编写tensorflow代码,实际上就是编写py文件,最好找一个好用的编辑器,如果你用vim或gedit比较顺手,那也可以的啦。我们既然已经安装了anaconda,那么它里面自带一个还算不错的编辑器,名叫spyder,用起来和matlab差不多,还可以在右上角查看变量的值。因此我一直使用这个编辑器。它的启动方式也很简单,直接在终端输入spyder就行了。

2、常量

我们一般引入tensorflow都用语句

import tensorflow as tf

因此,以后文章中我就直接用tf来表示tensorflow了。

在tf中,常量的定义用语句:

a=tf.constant(10)

这就定义了一个值为10的常量a

3、变量

变量用Variable来定义, 并且必须初始化,如:

x=tf.Variable(tf.ones([3,3]))
y=tf.Variable(tf.zeros([3,3]))

分别定义了一个3x3的全1矩阵x,和一个3x3的全0矩阵y,0和1的值就是初始化。

变量定义完后,还必须显式的执行一下初始化操作,即需要在后面加上一句:

init=tf.global_variables_initializer()

这句可不要忘了,否则会出错。

例:自定义一个拉普拉斯的W变量:

import tensorflow as tf
import numpy as np
x=np.array([[1,1,1],[1,-8,1],[1,1,1]])
w=tf.Variable(initial_value=x)
sess=tf.Session()
sess.run(tf.global_variables_initializer())
print(sess.run(w))

4、占位符

变量在定义时要初始化,但是如果有些变量刚开始我们并不知道它们的值,无法初始化,那怎么办呢?

那就用占位符来占个位置,如:

x = tf.placeholder(tf.float32, [None, 784])

指定这个变量的类型和shape,以后再用feed的方式来输入值。

5、图(graph)

如果把下面的python语句改在tf语句,该怎么写呢:

x=3
y=2
z=x+y
print(z)

定义两个变量,并将两个数相加,输出结果。如果在tf中直接像上面这样写,那就错了。x,y,z分别是三个tensor对象,对象间的运算称之为操作(op), tf不会去一条条地执行各个操作,而是把所有的操作都放入到一个图(graph)中,图中的每一个结点就是一个操作。然后行将整个graph 的计算过程交给一个 TensorFlow 的Session, 此 Session 可以运行整个计算过程,比起操作(operations)一条一条的执行效率高的多。

执行代码如下:

import tensorflow as tf

x = tf.Variable(3)
y = tf.Variable(5)
z=x+y
init =tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(sess.run(z))

其中sess.run()即是执行,注意要先执行变量初始化操作,再执行运算操作。

Session需要先创建,使用完后还需要释放。因此我们使用with...as..语句,让系统自动释放。

例子1:hello world

import tensorflow as tf
word=tf.constant('hello,world!')
with tf.Session() as sess:
    print(sess.run(word))

例子2:加法和乘法

import tensorflow as tf
a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)
add = tf.add(a, b)
mul = tf.mul(a, b)

with tf.Session() as sess:
    print('a+b=',sess.run(add, feed_dict={a: 2, b: 3}))
    print('a*b=',sess.run(mul, feed_dict={a: 2, b: 3}))

此处使用feed_dict以字典的方式对多个变量输入值。

例子3: 矩阵乘法

import tensorflow as tf
a=tf.Variable(tf.ones([3,2]))
b=tf.Variable(tf.ones([2,3]))
product=tf.matmul(5*a,4*b)
init=tf.initialize_all_variables()

with tf.Session() as sess:
    sess.run(init)
    print(sess.run(product))

其中

product=tf.matmul(5*a,4*b)

也可以改成

product=tf.matmul(tf.mul(5.0,a),tf.mul(4.0,b))

定义变量时,没有指定数据类型,则默认为float32,因此是5.0而不是5

以上就是python深度学习tensorflow入门基础教程示例的详细内容,更多关于python深度学习tensorflow基础的资料请关注我们其它相关文章!

(0)

相关推荐

  • python神经网络tensorflow利用训练好的模型进行预测

    目录 学习前言 载入模型思路 实现代码 学习前言 在神经网络学习中slim常用函数与如何训练.保存模型文章里已经讲述了如何使用slim训练出来一个模型,这篇文章将会讲述如何预测. 载入模型思路 载入模型的过程主要分为以下四步: 1.建立会话Session: 2.将img_input的placeholder传入网络,建立网络结构: 3.初始化所有变量: 4.利用saver对象restore载入所有参数. 这里要注意的重点是,在利用saver对象restore载入所有参数之前,必须要建立网络结构,因

  • python神经网络使用tensorflow构建长短时记忆LSTM

    目录 LSTM简介 1.RNN的梯度消失问题 2.LSTM的结构 tensorflow中LSTM的相关函数 tf.contrib.rnn.BasicLSTMCell tf.nn.dynamic_rnn 全部代码 LSTM简介 1.RNN的梯度消失问题 在过去的时间里我们学习了RNN循环神经网络,其结构示意图是这样的: 其存在的最大问题是,当w1.w2.w3这些值小于0时,如果一句话够长,那么其在神经网络进行反向传播与前向传播时,存在梯度消失的问题. 0.925=0.07,如果一句话有20到30个

  • Python3.8安装tensorflow的简单方法步骤

    目录 以下内容是针对安装tensorflow-CPU版本的. 1.打开Anaconda promote 2.创建tensorflow的虚拟环境. 3.激活新建的TensorFlow环境,在命令行输入 4.使用国内的镜像安装,这里选用的是清华的镜像. 5.测试安装是否成功 总结 以下内容是针对安装tensorflow-CPU版本的. tensorflow已经支持Python3.8版本的安装.可以查看自己的Python版本信息,以及可以支持的tensorflow版本号.在Anaconda promo

  • python深度学习TensorFlow神经网络模型的保存和读取

    目录 之前的笔记里实现了softmax回归分类.简单的含有一个隐层的神经网络.卷积神经网络等等,但是这些代码在训练完成之后就直接退出了,并没有将训练得到的模型保存下来方便下次直接使用.为了让训练结果可以复用,需要将训练好的神经网络模型持久化,这就是这篇笔记里要写的东西. TensorFlow提供了一个非常简单的API,即tf.train.Saver类来保存和还原一个神经网络模型. 下面代码给出了保存TensorFlow模型的方法: import tensorflow as tf # 声明两个变量

  • python神经网络TensorFlow简介常用基本操作教程

    目录 要将深度学习更快且更便捷地应用于新的问题中,选择一款深度学习工具是必不可少的步骤. TensorFlow是谷歌于2015年11月9日正式开源的计算框架.TensorFlow计算框架可以很好地支持深度学习的各种算法. TensorFlow很好地兼容了学术研究和工业生产的不同需求. 一方面,TensorFlow的灵活性使得研究人员能够利用它快速实现新的模型设计: 另一方面,TensorFlow强大的分布式支持,对工业界在海量数据集上进行的模型训练也至关重要.作为谷歌开源的深度学习框架,Tens

  • Python深度学习TensorFlow神经网络基础概括

    目录 一.基础理论 1.TensorFlow 2.TensorFlow过程 1.构建图阶段 2.执行图阶段(会话) 二.TensorFlow实例(执行加法) 1.构造静态图 1-1.创建数据(张量) 1-2.创建操作(节点) 2.会话(执行) API: 普通执行 fetches(多参数执行) feed_dict(参数补充) 总代码 一.基础理论 1.TensorFlow tensor:张量(数据) flow:流动 Tensor-Flow:数据流 2.TensorFlow过程 TensorFlow

  • python深度学习tensorflow安装调试教程

    目录 正文 一.安装anaconda 二.安装tensorflow 三.调试 正文 用过一段时间的caffe后,对caffe有两点感受:1.速度确实快; 2. 太不灵活了. 深度学习技术一直在发展,但是caffe的更新跟不上进度,也许是维护团队的关系:CAFFE团队成员都是业余时间在维护和更新.导致的结果就是很多新的技术在caffe里用不了,比如RNN, LSTM,batch-norm等.当然这些现在也算是旧的东西了,也许caffe已经有了,我已经很久没有关注caffe的新版本了.它的不灵活之处

  • python深度学习tensorflow入门基础教程示例

    目录 正文 1.编辑器 2.常量 3.变量 4.占位符 5.图(graph) 例子1:hello world 例子2:加法和乘法 例子3: 矩阵乘法 正文 TensorFlow用张量这种数据结构来表示所有的数据. 用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],可以看成是方括号嵌套的层数. 1.编辑器 编写tensorflow代码,实际上就是编写py文件,最好找一个好用的编辑器

  • python深度学习tensorflow卷积层示例教程

    目录 一.旧版本(1.0以下)的卷积函数:tf.nn.conv2d 二.1.0版本中的卷积函数:tf.layers.conv2d 一.旧版本(1.0以下)的卷积函数:tf.nn.conv2d 在tf1.0中,对卷积层重新进行了封装,比原来版本的卷积层有了很大的简化. conv2d( input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None ) 该函数定义在tensorflow/pytho

  • python深度学习tensorflow实例数据下载与读取

    目录 一.mnist数据 二.CSV数据 三.cifar10数据 一.mnist数据 深度学习的入门实例,一般就是mnist手写数字分类识别,因此我们应该先下载这个数据集. tensorflow提供一个input_data.py文件,专门用于下载mnist数据,我们直接调用就可以了,代码如下: import tensorflow.examples.tutorials.mnist.input_data mnist = input_data.read_data_sets("MNIST_data/&q

  • python深度学习tensorflow训练好的模型进行图像分类

    目录 正文 随机找一张图片 读取图片进行分类识别 最后输出 正文 谷歌在大型图像数据库ImageNet上训练好了一个Inception-v3模型,这个模型我们可以直接用来进来图像分类. 下载链接: https://pan.baidu.com/s/1XGfwYer5pIEDkpM3nM6o2A 提取码: hu66 下载完解压后,得到几个文件: 其中 classify_image_graph_def.pb 文件就是训练好的Inception-v3模型. imagenet_synset_to_huma

  • Python Flask基础教程示例代码

    本文研究的主要是Python Flask基础教程,具体介绍如下. 安装:pip install flask即可 一个简单的Flask from flask import Flask #导入Flask app = Flask(__name__) #创建一个Flask实例 #设置路由,即url @app.route('/') #url对应的函数 def hello_world(): #返回的页面 return 'Hello World!' #这个不是作为模块导入的时候运行,比如这个文件为aa.py,

  • Python深度学习线性代数示例详解

    目录 标量 向量 长度.维度和形状 矩阵 张量 张量算法的基本性质 降维 点积 矩阵-矩阵乘法 范数 标量 标量由普通小写字母表示(例如,x.y和z).我们用 R \mathbb{R} R表示所有(连续)实数标量的空间. 标量由只有一个元素的张量表示.下面代码,我们实例化了两个标量,并使用它们执行一些熟悉的算数运算,即加法.乘法.除法和指数. import torch x = torch.tensor([3.0]) y = torch.tensor([2.0]) x + y, x * y, x

  • Python深度学习实战PyQt5布局管理项目示例详解

    目录 1. 从绝对定位到布局管理 1.1 什么是布局管理 1.2 Qt 中的布局管理方法 2. 水平布局(Horizontal Layout) 3. 垂直布局(Vertical Layout) 4. 栅格布局(Grid Layout) 5. 表格布局(Form Layout) 6. 嵌套布局 7. 容器布局 布局管理就是管理图形窗口中各个部件的位置和排列.图形窗口中的大量部件也需要通过布局管理,对部件进行整理分组.排列定位,才能使界面整齐有序.美观大方. 1. 从绝对定位到布局管理 1.1 什么

随机推荐