python matplotlib 注释文本箭头简单代码示例

注释文本箭头

结果展示:

完整代码示例:

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=(5, 5))
ax.set_aspect(1)

x1 = -1 + np.random.randn(100)
y1 = -1 + np.random.randn(100)
x2 = 1. + np.random.randn(100)
y2 = 1. + np.random.randn(100)

ax.scatter(x1, y1, color="r")
ax.scatter(x2, y2, color="g")

bbox_props = dict(boxstyle="round", fc="w", ec="0.5", alpha=0.9)
ax.text(-2, -2, "Sample A", ha="center", va="center", size=20,
    bbox=bbox_props)
ax.text(2, 2, "Sample B", ha="center", va="center", size=20,
    bbox=bbox_props)

bbox_props = dict(boxstyle="rarrow", fc=(0.8, 0.9, 0.9), ec="b", lw=2)
t = ax.text(0, 0, "Direction", ha="center", va="center", rotation=45,
      size=15,
      bbox=bbox_props)

bb = t.get_bbox_patch()
bb.set_boxstyle("rarrow", pad=0.6)

ax.set_xlim(-4, 4)
ax.set_ylim(-4, 4)

plt.show()

总结

以上就是本文关于python matplotlib 注释文本箭头简单代码示例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

matplotlib绘制动画代码示例

python+matplotlib绘制简单的海豚(顶点和节点的操作)》

Python通过matplotlib画双层饼图及环形图简单示例

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

时间: 2018-01-07

Python通过matplotlib绘制动画简单实例

Matplotlib是一个Python的2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形. 通过Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等. matplotlib从1.1.0版本以后就开始支持绘制动画,具体使用可以参考官方帮助文档.下面是一个很基本的例子: """ A simple example of an animated plot """ import n

Python使用Matplotlib实现Logos设计代码

本文主要展示了使用matplotlib设计logo的示例及完整代码,首先看下其演示结果: Python代码如下: import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.cm as cm mpl.rcParams['xtick.labelsize'] = 10 mpl.rcParams['ytick.labelsize'] = 12 mpl.rcParams['ax

Python+matplotlib+numpy绘制精美的条形统计图

本文实例主要向大家分享了一个Python+matplotlib+numpy绘制精美的条形统计图的代码,效果展示如下: 完整代码如下: import matplotlib.pyplot as plt from numpy import arange from numpy.random import rand def gbar(ax, x, y, width=0.5, bottom=0): X = [[.6, .6], [.7, .7]] for left, top in zip(x, y): ri

Python+matplotlib实现计算两个信号的交叉谱密度实例

 计算两个信号的交叉谱密度 结果展示: 完整代码: import numpy as np import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(2, 1) # make a little extra space between the subplots fig.subplots_adjust(hspace=0.5) dt = 0.01 t = np.arange(0, 30, dt) # Fixing random stat

Python实战小程序利用matplotlib模块画图代码分享

Python中的数据可视化 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件. 实战小程序:画出y=x^3的散点图 样例代码如下: #coding=utf-8 import pylab as y #引入pylab模块 x = y.np.linspace(-10, 10, 100) #设置x横坐标范围和点数 y.plot(x, x*x*x,'or') #生成图像 ax = y.gca() a

Python使用matplotlib的pie函数绘制饼状图功能示例

本文实例讲述了Python使用matplotlib的pie函数绘制饼状图功能.分享给大家供大家参考,具体如下: matplotlib具体安装方法可参考前面一篇http://www.jb51.net/article/51812.htm,具体使用代码如下: #coding=utf8 import matplotlib as mpl import numpy as np import matplotlib.pyplot as plt ''''' matplotlib.pyplot.pie函数:画一个饼

Python的地形三维可视化Matplotlib和gdal使用实例

我是以Python开门的,我还是觉得Python也可以进行地形三维可视化,当然这里需要借助第三方库,so,我就来介绍:Python一个很重要可视化插件,Matplotlib. Matplotlib是Python最著名的绘图库,它提供了一整套友好的命令,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中.你会发现Matplotlib和matlab相似,但是你知道matlab强大是很强大,但是安装包就有7G,一下就让我失去玩弄他的兴趣. Matplotlib的二维图形非

matplotlib在python上绘制3D散点图实例详解

大家可以先参考官方演示文档: 效果图: ''' ============== 3D scatterplot ============== Demonstration of a basic scatterplot in 3D. ''' from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np def randrange(n, vmin, vmax): ''' Helper f

Android开发 OpenGL ES绘制3D 图形实例详解

OpenGL ES是 OpenGL三维图形API 的子集,针对手机.PDA和游戏主机等嵌入式设备而设计. Ophone目前支持OpenGL ES 1.0 ,OpenGL ES 1.0 是以 OpenGL 1.3 规范为基础的,OpenGL ES 1.1 是以 OpenGL 1.5 规范为基础的.本文主要介绍利用OpenGL ES绘制图形方面的基本步骤. 本文内容由三部分构成.首先通过EGL获得OpenGL ES的编程接口;其次介绍构建3D程序的基本概念;最后是一个应用程序示例. OpenGL E

python实现梯度下降算法的实例详解

python版本选择 这里选的python版本是2.7,因为我之前用python3试了几次,发现在画3d图的时候会报错,所以改用了2.7. 数据集选择 数据集我选了一个包含两个变量,三个参数的数据集,这样可以画出3d图形对结果进行验证. 部分函数总结 symbols()函数:首先要安装sympy库才可以使用.用法: >>> x1 = symbols('x2') >>> x1 + 1 x2 + 1 在这个例子中,x1和x2是不一样的,x2代表的是一个函数的变量,而x1代表

IOS 绘制三角形的实例详解

IOS 绘制三角形的实例详解 先上效果图 上面三角形的代码 - (void)ljTestView { CGPoint piont1; piont1.x = 170; piont1.y = 100; CGPoint piont2; piont2.x = 50; piont2.y = 200; CGPoint piont3; piont3.x = 220; piont3.y = 200; ljDrawRect *_ljView = [[ljDrawRect alloc]initStartPoint:

Python探索之URL Dispatcher实例详解

URL dispatcher简单点理解就是根据URL,将请求分发到相应的方法中去处理,它是对URL和View的一个映射,它的实现其实也很简单,就是一个正则匹配的过程,事先定义好正则表达式和该正则表达式对应的view方法,如果请求的URL符合这个正则表达式,那么就分发这个请求到这个view方法中. 有了这个base,我们先抛出几个问题,提前思考一下: 这个映射定义在哪里?当映射很多时,如果有效的组织? URL中的参数怎么获取,怎么传给view方法? 如何在view或者是template中反解出UR

Python 中迭代器与生成器实例详解

Python 中迭代器与生成器实例详解 本文通过针对不同应用场景及其解决方案的方式,总结了Python中迭代器与生成器的一些相关知识,具体如下: 1.手动遍历迭代器 应用场景:想遍历一个可迭代对象中的所有元素,但是不想用for循环 解决方案:使用next()函数,并捕获StopIteration异常 def manual_iter(): with open('/etc/passwd') as f: try: while True: line=next(f) if line is None: br

Python 高级专用类方法的实例详解

Python 高级专用类方法的实例详解 除了 __getitem__ 和 __setitem__ 之外 Python 还有更多的专用函数.某些可以让你模拟出你甚至可能不知道的功能.下面的例子将展示 UserDict 一些其他专用方法. def __repr__(self): return repr(self.data) (1) def __cmp__(self, dict): (2) if isinstance(dict, UserDict): return cmp(self.data, dic

Python 网页解析HTMLParse的实例详解

Python 网页解析HTMLParse的实例详解 使用python将网页抓取下来之后,下一步我们就应该解析网页,提取我们所需要的内容了,在python里提供了一个简单的解析模块HTMLParser类,使用起来也是比较简单的,解析语法没有用到XPath类似的简洁模式,但新手用起来还是比较容易的,看下面的例子: 现在一个模拟的html文件: <html> <title id='main' mouse='你好'>我是标题</title><body>我是内容<

python 数据的清理行为实例详解

python 数据的清理行为实例详解 数据清洗主要是指填充缺失数据,消除噪声数据等操作,主要还是通过分析"脏数据"产生的原因和存在形式,利用现有的数据挖掘手段去清洗"脏数据",然后转化为满足数据质量要求或者是应用要求的数据. 1.try 语句还有另外一个可选的子句,它定义了无论在任何情况下都会执行的清理行为. 例如: >>>try: raiseKeyboardInterrupt finally: print('Goodbye, world!') G

python 读写中文json的实例详解

 python 读写中文json的实例详解 读写中文json 想要 读写中文json ,可以使用python中的 json 库可以对json进行操作.读入数据可以使用 json.load. f = file(path) data = json.load(f) json被载入到一个dict类型的object对象中. 使用 json.dump可以输出json.不过输出的文本并不是中文,而是转换为 utf-8的格式.此处需要: output = json.dump(jsonData,targetFil