Python 可视化神器Plotly详解

文 | 潮汐

来源:Python 技术「ID: pythonall」

学习Python是做数分析的最基础的一步,数据分析离不开数据可视化。Python第三方库中我们最常用的可视化库是 pandas,matplotlib,pyecharts, 当然还有 Tableau,另外最近在学习过程中发现另一款可视化神器-Plotly,它是一款用来做数据分析和可视化的在线平台,功能非常强大, 可以在线绘制很多图形比如条形图、散点图、饼图、直方图等等。除此之外,它还支持在线编辑,以及多种语言 python、javascript、matlab、R等许多API。它在python中使用也非常简单,直接用pip install plotly 安装好即可使用。本文将结合 plotly 库在 jupyter notebook 中来进行图形绘制。

使用 Plotly 可以画出很多媲美Tableau的高质量图,如下图所示:

折线点图

折现点图画图步骤如下:首先在 Pycharm 界面输入 jupyter notebook后进入网页编辑界面,新建一个文件,导入相应的包即可进行图形绘制:

# import pkg
from plotly.graph_objs import Scatter,Layout
import plotly
import plotly.offline as py
import numpy as np
import plotly.graph_objs as go
#设置编辑模式
plotly.offline.init_notebook_mode(connected=True)
#制作折线图
N = 150
random_x = np.linspace(0,1,N)
random_y0 = np.random.randn(N)+7
random_y1 = np.random.randn(N)
random_y2 = np.random.randn(N)-7

trace0 = go.Scatter(
  x = random_x,
  y = random_y0,
  mode = 'markers',
  name = 'markers'
)
trace1 = go.Scatter(
  x = random_x,
  y = random_y1,
  mode = 'lines+markers',
  name = 'lines+markers'
)
trace2 = go.Scatter(
  x = random_x,
  y = random_y2,
  mode = 'lines',
  name = 'lines'
)
data = [trace0,trace1,trace2]
py.iplot(data)

显示结果如下:

直方图

# 直方图
trace0 = go.Bar(
  x = ['Jan','Feb','Mar','Apr', 'May','Jun',
     'Jul','Aug','Sep','Oct','Nov','Dec'],
  y = [20,15,25,16,18,28,19,67,12,56,14,27],
  name = 'Primary Product',
  marker=dict(
    color = 'rgb(49,130,189)'
  )
)
trace1 = go.Bar(
  x = ['Jan','Feb','Mar','Apr', 'May','Jun',
     'Jul','Aug','Sep','Oct','Nov','Dec'],
  y = [29,14,32,14,16,19,25,14,10,12,82,16],
  name = 'Secondary Product',
  marker=dict(
    color = 'rgb(204,204,204)'
  )
)
data = [trace0,trace1]
py.iplot(data)

显示结果如下:

散点图

# 散点图
trace1 = go.Scatter(
   y = np.random.randn(700),
  mode = 'markers',
  marker = dict(
    size = 16,
    color = np.random.randn(800),
    colorscale = 'Viridis',
    showscale = True
  )
)
data = [trace1]
py.iplot(data)

显示结果如下:

总结

今天的文章主要学习可视化神器-plotpy 的相关操作,希望在平时的工作中有所应用。更多的内容详见 https://plotly.com/python/

到此这篇关于Python 可视化神器Plotly详解的文章就介绍到这了,更多相关Python 可视化神器Plotly内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2020-12-25

Python使用plotly绘制数据图表的方法

导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示. 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示.本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示. Plotly简介 Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Pyt

地图可视化神器kepler.gl python接口的使用方法

1 简介 kepler.gl作为开源地理空间数据可视化神器,也一直处于活跃的迭代开发状态下.而在前不久,kepler.gl正式发布了其2.4.0版本,下面我们就来对其重要的新特性进行介绍: 2 kepler.gl 2.4.0重要新特性 2.1 增量时间窗口 在这次更新中,为时间序列数据的可视化新增了增量时间窗口功能,在上一个版本2.3.2中,当我们的数据集带有时间类型字段时,在添加对应的Filters之后,显示出的时间窗口是这个样子的: 而在2.4.0版本中,时间窗口如图所示: 在如下图一样从默

python plotly绘制直方图实例详解

计算数值出现的次数 import cufflinks as cf cf.go_offline() import numpy as np import pandas as pd set_slippage_avg_cost = [22.01, 20.98, 17.11, 9.06, 9.4, 3.65, 19.65, 7.01, 11.21, 10.3, 5.1, 23.98, 12.03, 8.13, 8.07, 9.28, 3.93, 4.23, 18.6, 8.22, 7.85, 5.39,

详解Python使用Plotly绘图工具,绘制甘特图

今天来讲一下如何使用Python 的绘图工具Plotly来绘制甘特图的方法 甘特图大家应该了解熟悉,就是通过条形来显示项目的进度.时间安排等相关情况的. 我们今天来学习一下,如何使用ployly来绘制甘特图 绘制甘特图的函数为Plotly.figure_factoryz中create_gantt方法 通过参数事件Task,开始Start,结束Finish的时间的数据来绘制甘特图 import plotly as py import plotly.figure_factory as ff pypl

详解Python可视化神器Yellowbrick使用

机器学习中非常重要的一环就是数据的可视化分析,从源数据的可视化到结果数据的可视化都离不开可视化工具的使用,sklearn+matplotlib的组合在日常的工作中已经满足了绝对大多数的需求,今天主要介绍的是一个基于sklearn和matplotlib模块进行扩展的可视化工具Yellowbrick. Yellowbrick的官方文档在这里.Yellowbrick是由一套被称为"Visualizers"组成的可视化诊断工具组成的套餐,其由Scikit-Learn API延伸而来,对模型选择

详解python实现可视化的MD5、sha256哈希加密小工具

本文主要介绍了详解python实现可视化的MD5.sha256哈希加密小工具,分享给大家,具体如下: 效果图: 刚启动的状态 输入文本.触发加密按钮后支持复制 超过十条不全量显示 代码 import hashlib import tkinter as tk #窗口控制 windowss=tk.Tk() windowss.title('Python_md5')#窗口title,并非第一行 windowss.geometry('820x550') windowss.resizable(width=T

详解python里使用正则表达式的分组命名方式

详解python里使用正则表达式的分组命名方式 分组匹配的模式,可以通过groups()来全部访问匹配的元组,也可以通过group()函数来按分组方式来访问,但是这里只能通过数字索引来访问,如果某一天产品经理需要修改需求,让你在它们之中添加一个分组,这样一来,就会导致匹配的数组的索引的变化,作为开发人员的你,必须得一行一行代码地修改.因此聪明的开发人员又想到一个好方法,把这些分组进行命名,只需要对名称进行访问分组,不通过索引来访问了,就可以避免这个问题.那么怎么样来命名呢?可以采用(?P<nam

详解Python实现多进程异步事件驱动引擎

本文介绍了详解Python实现多进程异步事件驱动引擎,分享给大家,具体如下: 多进程异步事件驱动逻辑 逻辑 code # -*- coding: utf-8 -*- ''' author: Jimmy contact: 234390130@qq.com file: eventEngine.py time: 2017/8/25 上午10:06 description: 多进程异步事件驱动引擎 ''' __author__ = 'Jimmy' from multiprocessing import

详解Python import方法引入模块的实例

详解Python import方法引入模块的实例 在Python用import或者from-import或者from-import-as-来导入相应的模块,作用和使用方法与C语言的include头文件类似.其实就是引入某些成熟的函数库和成熟的方法,避免重复造轮子,提高开发速度. python的import方法可以引入系统的模块,也可以引入我们自己写好的共用模块,这点和PHP非常相似,但是它们的具体细节还不是很一样.因为php是在引入的时候指明引入文件的具体路径,而python中不能够写文件路径进

详解python中executemany和序列的使用方法

详解python中executemany和序列的使用方法 一 代码 import sqlite3 persons=[ ("Jim","Green"), ("Hu","jie") ] conn=sqlite3.connect(":memory:") conn.execute("CREATE TABLE person(firstname,lastname)") conn.executeman

详解Python 序列化Serialize 和 反序列化Deserialize

详解Python 序列化Serialize 和 反序列化Deserialize 序列化 (serialization) 序列化是将对象状态转换为可保持或传输的格式的过程.与序列化相对的是反序列化, 它将流转换为对象.这两个过程结合起来,可以轻松地存储和传输数据. 序列化和反序列化的目的 1.以某种存储形式使自定义对象持久化: 2.将对象从一个地方传递到另一个地方. 3.使程序更具维护性 序列化   由于存在于内存中的对象都是暂时的,无法长期驻存,为了把对象的状态保持下来,这时需要把对象写入到磁盘

详解python里使用正则表达式的全匹配功能

详解python里使用正则表达式的全匹配功能 python中很多匹配,比如搜索任意位置的search()函数,搜索边界的match()函数,现在还需要学习一个全匹配函数,就是搜索的字符与内容全部匹配,它就是fullmatch()函数. 例子如下: #python 3.6 #蔡军生 #http://blog.csdn.net/caimouse/article/details/51749579 # import re text = 'This is some text -- with punctua

详解python实现读取邮件数据并下载附件的实例

详解python实现读取邮件数据并下载附件的实例 实现结果图: 实现代码: #!/usr/bin/python2.7 # _*_ coding: utf-8 _*_ """ @Author: MarkLiu """ import poplib import email from email.parser import Parser from email.header import decode_header from email.utils im

详解Python 模拟实现生产者消费者模式的实例

详解Python 模拟实现生产者消费者模式的实例 散仙使用python3.4模拟实现的一个生产者与消费者的例子,用到的知识有线程,队列,循环等,源码如下: Python代码 import queue import time import threading import random q=queue.Queue(5) #生产者 def pr(): name=threading.current_thread().getName() print(name+"线程启动......") for