详解Python可视化神器Yellowbrick使用

机器学习中非常重要的一环就是数据的可视化分析,从源数据的可视化到结果数据的可视化都离不开可视化工具的使用,sklearn+matplotlib的组合在日常的工作中已经满足了绝对大多数的需求,今天主要介绍的是一个基于sklearn和matplotlib模块进行扩展的可视化工具Yellowbrick。

Yellowbrick的官方文档在这里。Yellowbrick是由一套被称为"Visualizers"组成的可视化诊断工具组成的套餐,其由Scikit-Learn API延伸而来,对模型选择过程其指导作用。总之,Yellowbrick结合了Scikit-Learn和Matplotlib并且最好得传承了Scikit-Learn文档,对 你的 模型进行可视化!

Yellowbrick主要包含的组件如下:

Visualizers
Visualizers也是estimators(从数据中习得的对象),其主要任务是产生可对模型选择过程有更深入了解的视图。从Scikit-Learn来看,当可视化数据空间或者封装一个模型estimator时,其和转换器(transformers)相似,就像"ModelCV" (比如 RidgeCV, LassoCV )的工作原理一样。Yellowbrick的主要目标是创建一个和Scikit-Learn类似的有意义的API。其中最受欢迎的visualizers包括:

特征可视化
Rank Features: 对单个或者两两对应的特征进行排序以检测其相关性
Parallel Coordinates: 对实例进行水平视图
Radial Visualization: 在一个圆形视图中将实例分隔开
PCA Projection: 通过主成分将实例投射
Feature Importances: 基于它们在模型中的表现对特征进行排序
Scatter and Joint Plots: 用选择的特征对其进行可视化
分类可视化
Class Balance: 看类的分布怎样影响模型
Classification Report: 用视图的方式呈现精确率,召回率和F1值
ROC/AUC Curves: 特征曲线和ROC曲线子下的面积
Confusion Matrices: 对分类决定进行视图描述
回归可视化
Prediction Error Plot: 沿着目标区域对模型进行细分
Residuals Plot: 显示训练数据和测试数据中残差的差异
Alpha Selection: 显示不同alpha值选择对正则化的影响
聚类可视化
K-Elbow Plot: 用肘部法则或者其他指标选择k值
Silhouette Plot: 通过对轮廓系数值进行视图来选择k值
文本可视化
Term Frequency: 对词项在语料库中的分布频率进行可视化
t-SNE Corpus Visualization: 用随机邻域嵌入来投射文档

这里以癌症数据集为例绘制ROC曲线,如下:

def testFunc1(savepath='Results/breast_cancer_ROCAUC.png'):
 '''
 基于癌症数据集的测试
 '''
 data=load_breast_cancer()
 X,y=data['data'],data['target']
 X_train, X_test, y_train, y_test = train_test_split(X, y)
 viz=ROCAUC(LogisticRegression())
 viz.fit(X_train, y_train)
 viz.score(X_test, y_test)
 viz.poof(outpath=savepath)

结果如下:

结果看起来也是挺美观的。

之后用平行坐标的方法对高维数据进行作图,数据集同上:

def testFunc2(savepath='Results/breast_cancer_ParallelCoordinates.png'):
 '''
 用平行坐标的方法对高维数据进行作图
 '''
 data=load_breast_cancer()
 X,y=data['data'],data['target']
 print 'X_shape: ',X.shape #X_shape: (569L, 30L)
 visualizer=ParallelCoordinates()
 visualizer.fit_transform(X,y)
 visualizer.poof(outpath=savepath)

结果如下:

这个最初没有看明白什么意思,其实就是高维特征数据的可视化分析,这个功能还可以对原始数据进行采样,之后再绘图。

基于癌症数据集,使用逻辑回归模型来分类,绘制分类报告

def testFunc3(savepath='Results/breast_cancer_LR_report.png'):
 '''
 基于癌症数据集,使用逻辑回归模型来分类,绘制分类报告
 '''
 data=load_breast_cancer()
 X,y=data['data'],data['target']
 model=LogisticRegression()
 visualizer=ClassificationReport(model)
 X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=42)
 visualizer.fit(X_train,y_train)
 visualizer.score(X_test,y_test)
 visualizer.poof(outpath=savepath)

结果如下:

这样的结果展现方式还是比较美观的,在使用的时候发现了这个模块的一个不足的地方,就是:如果连续绘制两幅图片的话,第一幅图片就会累加到第二幅图片中去,多幅图片绘制亦是如此,在matplotlib中可以使用plt.clf()方法来清除上一幅图片,这里没有找到对应的API,希望有找到的朋友告知一下。

接下来基于共享单车数据集进行租借预测,具体如下:

首先基于特征对相似度分析方法来分析共享单车数据集中两两特征之间的相似度

def testFunc5(savepath='Results/bikeshare_Rank2D.png'):
 '''
 共享单车数据集预测
 '''
 data=pd.read_csv('bikeshare/bikeshare.csv')
 X=data[["season", "month", "hour", "holiday", "weekday", "workingday",
   "weather", "temp", "feelslike", "humidity", "windspeed"
   ]]
 y=data["riders"]
 visualizer=Rank2D(algorithm="pearson")
 visualizer.fit_transform(X)
 visualizer.poof(outpath=savepath)

基于线性回归模型实现预测分析

def testFunc7(savepath='Results/bikeshare_LinearRegression_ResidualsPlot.png'):
 '''
 基于共享单车数据使用线性回归模型预测
 '''
 data = pd.read_csv('bikeshare/bikeshare.csv')
 X=data[["season", "month", "hour", "holiday", "weekday", "workingday",
   "weather", "temp", "feelslike", "humidity", "windspeed"]]
 y=data["riders"]
 X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
 visualizer=ResidualsPlot(LinearRegression())
 visualizer.fit(X_train, y_train)
 visualizer.score(X_test, y_test)
 visualizer.poof(outpath=savepath)

结果如下:

基于共享单车数据使用AlphaSelection

def testFunc8(savepath='Results/bikeshare_RidgeCV_AlphaSelection.png'):
 '''
 基于共享单车数据使用AlphaSelection
 '''
 data=pd.read_csv('bikeshare/bikeshare.csv')
 X=data[["season", "month", "hour", "holiday", "weekday", "workingday",
   "weather", "temp", "feelslike", "humidity", "windspeed"]]
 y=data["riders"]
 alphas=np.logspace(-10, 1, 200)
 visualizer=AlphaSelection(RidgeCV(alphas=alphas))
 visualizer.fit(X, y)
 visualizer.poof(outpath=savepath)

结果如下:

基于共享单车数据绘制预测错误图

def testFunc9(savepath='Results/bikeshare_Ridge_PredictionError.png'):
 '''
 基于共享单车数据绘制预测错误图
 '''
 data=pd.read_csv('bikeshare/bikeshare.csv')
 X=data[["season", "month", "hour", "holiday", "weekday", "workingday",
   "weather", "temp", "feelslike", "humidity", "windspeed"]]
 y=data["riders"]
 X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
 visualizer=PredictionError(Ridge(alpha=3.181))
 visualizer.fit(X_train, y_train)
 visualizer.score(X_test, y_test)
 visualizer.poof(outpath=savepath)
blog.csdn.net/Together_CZ/article/details/86640784

结果如下:

今天先记录到这里,之后有时间继续更新学习!

总结

以上所述是小编给大家介绍的Python可视化神器Yellowbrick使用,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

时间: 2019-11-08

Python的地形三维可视化Matplotlib和gdal使用实例

我是以Python开门的,我还是觉得Python也可以进行地形三维可视化,当然这里需要借助第三方库,so,我就来介绍:Python一个很重要可视化插件,Matplotlib. Matplotlib是Python最著名的绘图库,它提供了一整套友好的命令,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中.你会发现Matplotlib和matlab相似,但是你知道matlab强大是很强大,但是安装包就有7G,一下就让我失去玩弄他的兴趣. Matplotlib的二维图形非

VTK与Python实现机械臂三维模型可视化详解

三维可视化系统的建立依赖于三维图形平台, 如 OpenGL.VTK.OGRE.OSG等, 传统的方法多采用OpenGL进行底层编程,即对其特有的函数进行定量操作, 需要开发人员熟悉相关函数, 从而造成了开发难度大. 周期长等问题.VTK. ORGE.OSG等平台使用封装更好的函数简化了开发过程.下面将使用Python与VTK进行机器人上位机监控界面的快速原型开发. 完整的上位机程序需要有三维显示模块.机器人信息监测模块(位置/角度/速度/电量/温度/错误信息...).通信模块(串口/USB/WI

利用Python代码实现数据可视化的5种方法详解

前言 数据科学家并不逊色于艺术家.他们用数据可视化的方式绘画,试图展现数据内隐藏的模式或表达对数据的见解.更有趣的是,一旦接触到任何可视化的内容.数据时,人类会有更强烈的知觉.认知和交流. 数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型.高维数据集.在项目结束时,以清晰.简洁和引人注目的方式展现最终结果是非常

Python实现简单层次聚类算法以及可视化

本文实例为大家分享了Python实现简单层次聚类算法,以及可视化,供大家参考,具体内容如下 基本的算法思路就是:把当前组间距离最小的两组合并成一组. 算法的差异在算法如何确定组件的距离,一般有最大距离,最小距离,平均距离,马氏距离等等. 代码如下: import numpy as np import data_helper np.random.seed(1) def get_raw_data(n): _data=np.random.rand(n,2) #生成数据的格式是n个(x,y) _grou

Python数据可视化库seaborn的使用总结

seaborn是python中的一个非常强大的数据可视化库,它集成了matplotlib,下图为seaborn的官网,如果遇到疑惑的地方可以到官网查看.http://seaborn.pydata.org/ 从官网的主页我们就可以看出,seaborn在数据可视化上真的非常强大. 1.首先我们还是需要先引入库,不过这次要用到的python库比较多. import numpy as np import pandas as pd import matplotlib as mpl import matpl

Python干货:分享Python绘制六种可视化图表

可视化图表,有相当多种,但常见的也就下面几种,其他比较复杂一点,大都也是基于如下几种进行组合,变换出来的.对于初学者来说,很容易被这官网上众多的图表类型给吓着了,由于种类太多,几种图表的绘制方法很有可能会混淆起来. 因此,在这里,我特地总结了六种常见的基本图表类型,你可以通过对比学习,打下坚实的基础. 01. 折线图 绘制折线图,如果你数据不是很多的话,画出来的图将是曲折状态,但一旦你的数据集大起来,比如下面我们的示例,有100个点,所以我们用肉眼看到的将是一条平滑的曲线. 这里我绘制三条线,只

Python数据分析:手把手教你用Pandas生成可视化图表的教程

大家都知道,Matplotlib 是众多 Python 可视化包的鼻祖,也是Python最常用的标准可视化库,其功能非常强大,同时也非常复杂,想要搞明白并非易事.但自从Python进入3.0时代以后,pandas的使用变得更加普及,它的身影经常见于市场分析.爬虫.金融分析以及科学计算中. 作为数据分析工具的集大成者,pandas作者曾说,pandas中的可视化功能比plt更加简便和功能强大.实际上,如果是对图表细节有极高要求,那么建议大家使用matplotlib通过底层图表模块进行编码.当然,我

Python基于matplotlib实现绘制三维图形功能示例

本文实例讲述了Python基于matplotlib实现绘制三维图形功能.分享给大家供大家参考,具体如下: 代码一: # coding=utf-8 import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d x,y = np.mgrid[-2:2:20j,-2:2:20j] #测试数据 z=x*np.exp(-x**2-y**2) #三维图形 ax = plt.subplot(111, project

在python中,使用scatter绘制散点图的实例

如下所示: # coding=utf-8 import matplotlib.pyplot as plt x_values=[1,2,3,4,5] y_values=[1,4,9,16,25] # s为点的大小 plt.scatter(x_values,y_values,s=100) # 设置图表标题并给坐标轴加上标签 plt.title("Scatter pic",fontsize=24) plt.xlabel("Value",fontsize=14) plt.y

python学习之matplotlib绘制散点图实例

要绘制单个点,可使用函数scatter(),并向其传递一对x和y坐标,它将在指定位置绘制一个点: """使用scatter()绘制散点图""" import matplotlib.pyplot as plt plt.scatter(2, 4) plt.show() 下面来设置输出的样式:添加标题,给轴加上标签,并确保所有文本都大到能够看清.并使用scatter()绘制一系列点 """使用scatter()绘制散点图&

Python使用Turtle模块绘制五星红旗代码示例

在Udacity上课时学到了python的turtle方法,这是一个很经典的用来教小孩儿编程的图形模块,最早起源于logo语言.python本身内置了这个模块,其可视化的方法可以帮助小孩儿对编程的一些基本理念有所理解. 在作业提交的论坛里看到很多turtle画出来的精美图形,想不出什么要画的东西,于是决定拿五星红旗来练练手. 前期准备 五星红旗绘制参数 Turtle官方文档 turtle的基本操作 # 初始化屏幕 window = turtle.Screen() # 新建turtle对象实例 i

Python利用turtle库绘制彩虹代码示例

语言:Python IDE:Python.IDE 需求 做出彩虹效果 颜色空间 RGB模型:光的三原色,共同决定色相 HSB/HSV模型:H色彩,S深浅,B饱和度,H决定色相 需要将HSB模型转换为RGB模型 代码示例: #-*- coding:utf-8 –*- from turtle import * def HSB2RGB(hues): hues = hues * 3.59 #100转成359范围 rgb=[0.0,0.0,0.0] i = int(hues/60)%6 f = hues/

python+matplotlib实现动态绘制图片实例代码(交互式绘图)

本文研究的主要是python+matplotlib实现动态绘制图片(交互式绘图)的相关内容,具体介绍和实现代码如下所示. 最近在研究动态障碍物避障算法,在Python语言进行算法仿真时需要实时显示障碍物和运动物的当前位置和轨迹,利用Anaconda的Python打包集合,在Spyder中使用Python3.5语言和matplotlib实现路径的动态显示和交互式绘图(和Matlab功能类似). Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统

Python使用matplotlib实现绘制自定义图形功能示例

本文实例讲述了Python使用matplotlib实现绘制自定义图形功能.分享给大家供大家参考,具体如下: 一 代码 from matplotlib.path importPath from matplotlib.patches importPathPatch import matplotlib.pyplot as plt fig, ax = plt.subplots() #定义绘图指令与控制点坐标 #其中MOVETO表示将绘制起点移动到指定坐标 #CURVE4表示使用4个控制点绘制3次贝塞尔曲

Python实现的圆形绘制(画圆)示例

本文实例讲述了Python实现的圆形绘制.分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #! python3 import numpy as np import matplotlib.pyplot as plt # ========================================== # 圆的基本信息 # 1.圆半径 r = 2.0 # 2.圆心坐标 a, b = (0., 0.) # ==============================