Python求解正态分布置信区间教程

正态分布和置信区间

正态分布(Normal Distribution)又叫高斯分布,是一种非常重要的概率分布。其概率密度函数的数学表达如下:

置信区间是对该区间能包含未知参数的可置信的程度的描述。

使用SciPy求解置信区间

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

N = 10000
x = np.random.normal(0, 1, N)
# ddof取值为1是因为在统计学中样本的标准偏差除的是(N-1)而不是N,统计学中的标准偏差除的是N
# SciPy中的std计算默认是采用统计学中标准差的计算方式
mean, std = x.mean(), x.std(ddof=1)
print(mean, std)
# 计算置信区间
# 这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std)
print(conf_intveral)

输出如下:

0.0033541207210673997 0.9986647964318905
(-1.639303291798682, 1.6460115332408163)

这里的-1.639303291798682是置信上界,1.6460115332408163是置信下界,两个数值构成的区间就是置信区间

使用Matplotlib绘制正态分布密度曲线

# 绘制概率密度分布图
x = np.arange(-5, 5, 0.001)
# PDF是概率密度函数
y = stats.norm.pdf(x, loc=mean, scale=std)
plt.plot(x, y)
plt.show()

这里的pdf()函数是Probability density function,就是本文最开始的那个公式

最后的输出图像如下,可以看到结果跟理论上的正太分布还是比较像的:

正态分布置信区间规律

函数曲线下68.268949%的面积在平均数左右的一个标准差范围内

函数曲线下95.449974%的面积在平均数左右两个标准差的范围内

函数曲线下99.730020%的面积在平均数左右三个标准差的范围内

函数曲线下99.993666%的面积在平均数左右四个标准差的范围内

以上这篇Python求解正态分布置信区间教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

时间: 2019-11-19

使用Python实现正态分布、正态分布采样

多元正态分布(多元高斯分布) 直接从多元正态分布讲起.多元正态分布公式如下: 这就是多元正态分布的定义,均值好理解,就是高斯分布的概率分布值最大的位置,进行采样时也就是采样的中心点.而协方差矩阵在多维上形式较多. 协方差矩阵 一般来说,协方差矩阵有三种形式,分别称为球形.对角和全协方差.以二元为例: 为了方便展示不同协方差矩阵的效果,我们以二维为例.(书上截的图,凑活着看吧,是在不想画图了) 其实从这个图上可以很好的看出,协方差矩阵对正态分布的影响,也就很好明白了这三个协方差矩阵是哪里来的名字了

Python数据可视化正态分布简单分析及实现代码

Python说来简单也简单,但是也不简单,尤其是再跟高数结合起来的时候... 正态分布(Normaldistribution),也称"常态分布",又名高斯分布(Gaussiandistribution),最早由A.棣莫弗在求二项分布的渐近公式中得到.C.F.高斯在研究测量误差时从另一个角度导出了它.P.S.拉普拉斯和高斯研究了它的性质.是一个在数学.物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力. 正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人

Python数据可视化实现正态分布(高斯分布)

正态分布(Normal distribution)又成为高斯分布(Gaussian distribution) 若随机变量X服从一个数学期望为.标准方差为的高斯分布,记为: 则其概率密度函数为: 正态分布的期望值决定了其位置,其标准差决定了分布的幅度.因其曲线呈钟形,因此人们又经常称之为钟形曲线.我们通常所说的标准正态分布是的正态分布: 概率密度函数 代码实现: # Python实现正态分布 # 绘制正态分布概率密度函数 u = 0 # 均值μ u01 = -2 sig = math.sqrt(

使用python绘制3维正态分布图的方法

今天使用python画了几个好玩的3D展示图,现在分享给大家. 先贴上图片 使用的python工具包为: from matplotlib import pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D 在贴代码之前,有必要从整体上了解这些图是如何画出来的.可以把上面每一个3D图片理解成一个长方体.输入数据是三维的,x轴y轴和z轴.在第三个图片里面有x.y和z坐标的标识.在第三张图片中,我们可以理解为,

Python求正态分布曲线下面积实例

正态分布应用最广泛的连续概率分布,其特征是"钟"形曲线.这种分布的概率密度函数为: 其中,μ为均值,σ为标准差. 求正态分布曲线下面积有3σ原则: 正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68.268949%,横轴区间(μ-1.96σ,μ+1.96σ)内的面积为95.449974%,横轴区间(μ-2.58σ,μ+2.58σ)内的面积为99.730020%. 求任意区间内曲线下的面积,通常可以引用scipy包中的相关函数 norm函数生成一个给定均值和标准差的正态分布,cdf(x

在python中画正态分布图像的实例

1.正态分布简介 正态分布(normal distribtution)又叫做高斯分布(Gaussian distribution),是一个非常重要也非常常见的连续概率分布.正态分布大家也都非常熟悉,下面做一些简单的介绍. 假设随机变量XX服从一个位置参数为μμ.尺度参数为σσ的正态分布,则可以记为: 而概率密度函数为 2.在python中画正态分布直方图 先直接上代码 import numpy as np import matplotlib.mlab as mlab import matplot

Python使用numpy产生正态分布随机数的向量或矩阵操作示例

本文实例讲述了Python使用numpy产生正态分布随机数的向量或矩阵操作.分享给大家供大家参考,具体如下: 简单来说,正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学.物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力.一般的正态分布可以通过标准正态分布配合数学期望向量和协方差矩阵得到.如下代码,可以得到满足一维和二维正态分布的样本. 示例1(一维正态分布): # coding=utf-8 '''

python中numpy包使用教程之数组和相关操作详解

前言 大家应该都有所了解,下面就简单介绍下Numpy,NumPy(Numerical Python)是一个用于科学计算第三方的Python包. NumPy提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生.下面本文将详细介绍关于python中numpy包使用教程之数组和相关操作的相关内容,下面话不多说,来一起看看详细的介绍: 一.数组简介 Numpy中,最重要的数据结构是:多维数组类型(numpy.ndarray) ndarray由两部分组成

Python cookbook(数据结构与算法)根据字段将记录分组操作示例

本文实例讲述了Python根据字段将记录分组操作.分享给大家供大家参考,具体如下: 问题:想根据字典或者对象实例的某个特定的字典(比如日期)来分组迭代数据 解决方案:itertools.groupby()函数在对数据进行分组时特别有用(前提是先以目标字典进行排序) rows = [ {'address': '5412 N CLARK', 'date': '07/01/2012'}, {'address': '5148 N CLARK', 'date': '07/04/2012'}, {'addr

Python实现的读取文件内容并写入其他文件操作示例

本文实例讲述了Python实现的读取文件内容并写入其他文件操作.分享给大家供大家参考,具体如下: 文件目录结构,如图: read_file.py是工作文件,file_test.py是读取文件源,write_test.py是写入目标文件. 文件A:file_test.py #coding=utf-8 for i in range(1, 10): print i 文件B:read_file.py # coding=utf-8 # 打开件A f = open('./file_test.py', 'rb

Python 字符串、列表、元组的截取与切片操作示例

本文实例讲述了Python 字符串.列表.元组的截取与切片操作.分享给大家供大家参考,具体如下: demo.py(字符串.列表.元组的截取): # 切片(截取) [开始索引:结束索引:步长] 步长默认为1 结束索引默认截取到末尾 # 字符串的截取 print("012345"[1:3]) # 12 # 列表的截取 print([0,1,2,3,4,5][1:3]) # [1, 2] # 元组的截取 print((0,1,2,3,4,5)[1:3]) # (1, 2) # 字典的元素是无

Python实现针对json中某个关键字段进行排序操作示例

本文实例讲述了Python实现针对json中某个关键字段进行排序操作.分享给大家供大家参考,具体如下: 示例: json_array = [{"time":20150312,"value":"c"}, {"time":20150301,"value":"a"}, {"time":20150305,"value":"b"}] js

Python实现对文件进行单词划分并去重排序操作示例

本文实例讲述了Python实现对文件进行单词划分并去重排序操作.分享给大家供大家参考,具体如下: 文件名:test1.txt 文件内容: But soft what light through yonder window breaks It is the east and Juliet is the sun Arise fair sun and kill the envious moon Who is already sick and pale with grief 样例输出: Enter fi

Python面向对象之类和对象属性的增删改查操作示例

本文实例讲述了Python面向对象之类和对象属性的增删改查操作.分享给大家供大家参考,具体如下: 一.类属性的操作 # -*- coding:utf-8 -*- #! python2 class Chinese: country = 'China' def __init__(self,name): self.name = name def play_ball(self,ball): print('%s play %s' %(self.name,ball)) #查看属性 print(Chinese

Python with关键字,上下文管理器,@contextmanager文件操作示例

本文实例讲述了Python with关键字,上下文管理器,@contextmanager文件操作.分享给大家供大家参考,具体如下: demo.py(with 打开文件): # open 方法的返回值赋值给变量 f,当离开 with 代码块的时候,系统会自动调用 f.close() 方法 # with 的作用和使用 try/finally 语句是一样的. with open("output.txt", "r") as f: f.write("XXXXX&qu

Python爬虫爬取电影票房数据及图表展示操作示例

本文实例讲述了Python爬虫爬取电影票房数据及图表展示操作.分享给大家供大家参考,具体如下: 爬虫电影历史票房排行榜 http://www.cbooo.cn/BoxOffice/getInland?pIndex=1&t=0 Python爬取历史电影票房纪录 解析Json数据 横向条形图展示 面向对象思想 导入相关库 import requests import re from matplotlib import pyplot as plt from matplotlib import font