Python Opencv任意形状目标检测并绘制框图
opencv 进行任意形状目标识别,供大家参考,具体内容如下
工作中有一次需要在简单的图上进行目标识别,目标的形状不固定,并且存在一定程度上的噪声影响,但是噪声影响不确定。这是一个简单的事情,因为图像并不复杂,现在将代码公布如下:
import cv2 def otsu_seg(img): ret_th, bin_img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) return ret_th, bin_img def find_pole(bin_img): img, contours, hierarchy = cv2.findContours(bin_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) area = 0 for i in range(len(contours)): area += cv2.contourArea(contours[i]) area_mean = area / len(contours) mark = [] for i in range(len(contours)): if cv2.contourArea(contours[i]) < area_mean: mark.append(i) return img, contours, hierarchy, mark def draw_box(img,contours): img = cv2.rectangle(img, (contours[0][0], contours[0][1]), (contours[1][0], contours[1][1]), (255,255,255), 3) return img def main(img): ret, th = otsu_seg(img) img_new, contours, hierarchy, mark = find_pole(th) for i in range(len(contours)): if i not in mark: left_point = contours[i].min(axis=1).min(axis=0) right_point = contours[i].max(axis=1).max(axis=0) img = draw_box(img, (left_point, right_point)) return img if __name__ =="__main__": img = cv2.imread('G:/test.png') img = main(img) cv2.imwrite('G:/test_d.png', img)
结果图如下:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
python+opencv+caffe+摄像头做目标检测的实例代码
首先之前已经成功的使用Python做图像的目标检测,这回因为项目最终是需要用摄像头的, 所以实现摄像头获取图像,并且用Python调用CAFFE接口来实现目标识别 首先是摄像头请选择支持Linux万能驱动兼容V4L2的摄像头, 因为之前用学ARM的时候使用的Smart210,我已经确认我的摄像头是支持的, 我把摄像头插上之後自然就在 /dev 目录下看到多了一个video0的文件, 这个就是摄像头的设备文件了,所以我就没有额外处理驱动的部分 一.检测环境 再来在开始前因为之前按着国嵌的指导手册安
-
python开启摄像头以及深度学习实现目标检测方法
最近想做实时目标检测,需要用到python开启摄像头,我手上只有两个uvc免驱的摄像头,性能一般.利用python开启摄像头费了一番功夫,主要原因是我的摄像头都不能用cv2的VideCapture打开,这让我联想到原来opencv也打不开Android手机上的摄像头(后来采用QML的Camera模块实现的).看来opencv对于摄像头的兼容性仍然不是很完善. 我尝了几种办法:v4l2,v4l2_capture以及simpleCV,都打不开.最后采用pygame实现了摄像头的采集功能,这里直接给大
-
10 行Python 代码实现 AI 目标检测技术【推荐】
只需10行Python代码,我们就能实现计算机视觉中目标检测. from imageai.Detection import ObjectDetection import os execution_path = os.getcwd() detector = ObjectDetection() detector.setModelTypeAsRetinaNet() detector.setModelPath( os.path.join(execution_path , "resnet50_coco_b
-
python opencv检测目标颜色的实例讲解
实例如下所示: # -*- coding:utf-8 -*- __author__ = 'kingking' __version__ = '1.0' __date__ = '14/07/2017' import cv2 import numpy as np import time if __name__ == '__main__': Img = cv2.imread('example.png')#读入一幅图像 kernel_2 = np.ones((2,2),np.uint8)#2x2的卷积核
-
Python+OpenCV目标跟踪实现基本的运动检测
目标跟踪是对摄像头视频中的移动目标进行定位的过程,有着非常广泛的应用.实时目标跟踪是许多计算机视觉应用的重要任务,如监控.基于感知的用户界面.增强现实.基于对象的视频压缩以及辅助驾驶等. 有很多实现视频目标跟踪的方法,当跟踪所有移动目标时,帧之间的差异会变的有用:当跟踪视频中移动的手时,基于皮肤颜色的均值漂移方法是最好的解决方案:当知道跟踪对象的一方面时,模板匹配是不错的技术. 本文代码是做一个基本的运动检测 考虑的是"背景帧"与其它帧之间的差异 这种方法检测结果还是挺不错的,但是需要
-
Python Opencv任意形状目标检测并绘制框图
opencv 进行任意形状目标识别,供大家参考,具体内容如下 工作中有一次需要在简单的图上进行目标识别,目标的形状不固定,并且存在一定程度上的噪声影响,但是噪声影响不确定.这是一个简单的事情,因为图像并不复杂,现在将代码公布如下: import cv2 def otsu_seg(img): ret_th, bin_img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) return ret_th, bin_img d
-
Python Opencv实现单目标检测的示例代码
一 简介 目标检测即为在图像中找到自己感兴趣的部分,将其分割出来进行下一步操作,可避免背景的干扰.以下介绍几种基于opencv的单目标检测算法,算法总体思想先尽量将目标区域的像素值全置为1,背景区域全置为0,然后通过其它方法找到目标的外接矩形并分割,在此选择一张前景和背景相差较大的图片作为示例. 环境:python3.7 opencv4.4.0 二 背景前景分离 1 灰度+二值+形态学 轮廓特征和联通组件 根据图像前景和背景的差异进行二值化,例如有明显颜色差异的转换到HSV色彩空间进行分割. 1
-
python opencv实现图片缺陷检测(讲解直方图以及相关系数对比法)
一.利用直方图的方式进行批量的图片缺陷检测(方法简单) 二.步骤(完整代码见最后) 2.1灰度转换(将原图和要检测对比的图分开灰度化) 灰度化的作用是因为后面的直方图比较需要以像素256为基准进行相关性比较 img = cv2.imread("0.bmp") #原图灰度转换 gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) #循环要检测的图,均灰度化 for i in range(1, 6): t1=cv2.cvtColor(cv2.imread
-
python 生成任意形状的凸包图代码
一.效果图: 在左图的白色区域周围,画任意形状的凸包图. 二.代码 import cv2 import numpy as np def generate_poly(image, n, area_thresh): """ 随机生成凸包 :param image: 二值图 :param n: 顶点个数 :param area_thresh: 删除小于此面积阈值的凸包 :return: 凸包图 """ row, col = np.where(image
-
基于python OpenCV实现动态人脸检测
本文实例为大家分享了python动态人脸检测的具体代码,供大家参考,具体内容如下 直接上代码: 按Q退出 import cv2 import numpy as np cv2.namedWindow("test") cap = cv2.VideoCapture(0) #加载摄像头录制 # cap = cv2.VideoCapture("test.mp4") #打开视频文件 success, frame = cap.read() # classifier = cv2.C
-
OpenCV+python实现实时目标检测功能
环境安装 安装Anaconda,官网链接Anaconda 使用conda创建py3.6的虚拟环境,并激活使用 conda create -n py3.6 python=3.6 //创建 conda activate py3.6 //激活 3.安装依赖numpy和imutils //用镜像安装 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy pip install -i https://pypi.tuna.tsinghua
-
Python 使用Opencv实现目标检测与识别的示例代码
在上章节讲述到图像特征检测与匹配 ,本章节是讲述目标检测与识别.后者是在前者的基础上进一步完善. 在本章中,我们使用HOG算法,HOG和SIFT.SURF同属一种类型的描述符.功能代码如下: import cv2 def is_inside(o, i): ox, oy, ow, oh = o ix, iy, iw, ih = i # 如果符合条件,返回True,否则返回False return ox > ix and oy > iy and ox + ow < ix + iw and o
随机推荐
- AngularJS中的Promise详细介绍及实例代码
- ASP.Net分页的分页导航实例
- perl处理xml的模块介绍
- ASP.NET通过Remoting service上传文件
- PHP获取当前页面完整URL的方法
- is_uploaded_file函数引发的不能上传文件问题
- Android编程获取Wifi名称(SSID)的方法
- Android 动态添加view或item并获取数据的实例
- 用js进行url编码后用php反解以及用php实现js的escape功能函数总结
- js控制按钮,防止频繁点击响应的实例
- javascript操作表格排序实例分析
- Array.prototype.slice 使用扩展
- Ruby升级后no such file to load -- readline解决办法
- PowerShell实现测试端口可用性脚本分享
- redis密码设置、访问权限控制等安全设置
- JS CSS文章查看系统
- Python网络爬虫与信息提取(实例讲解)
- Spring Boot实现通用的接口参数校验
- Objective-C中的语法糖示例详解
- 基于 IntelliJ IDEA 模拟 Servlet 网络请求示例
其他
- android studio app开机动画
- plotly juypter 离线不显示图像
- sql server 2019 虚机 安装
- layui table自带加载中样式
- anmie.js第一个tr
- shell获得所有挂载点
- cocos lua 判断文件夹是否存在
- tourch两个三通道tensor合并为6通道
- VBS 循环显示文本内容
- eigenface步骤
- js error对象 获取代码错误行数
- playwright抓包
- sql数据库导数据未指定的错误
- mybatis xml返回result
- dataframe 特定字符所在的index
- vue利用组件和路由写一个信息系统吧
- feign的request.headers()里date错误
- pyq QtDesigner插件
- node.js fs.stat 传值
- python 两个时间相减获取时间戳