Python中正则表达式对单个字符,多个字符和匹配边界等使用

Regular Expression,正则表达式,又称正规表示式、正规表示法、正则表达式、规则表达式、常规表示法(英语:Regular Expression,在代码中常简写为regex、regexp或RE),是计算机科学的一个概念。正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。在很多文本编辑器里,正则表达式通常被用来检索、替换那些匹配某个模式的文本。

Python 自1.5版本起增加了re 模块。re 模块使 Python 语言拥有全部的正则表达式功能。

1.re.match函数

python用re.match函数从字符串的起始位置匹配一个模式,若字符串匹配正则表达式,则match方法返回匹配对象(Match Object),否则返回None(注意不是空字符串"")。匹配对象Macth Object具有group方法,用来返回字符串的匹配部分。

函数语法:re.match(pattern, string, flags) ;pattern是正则表达式,string需要匹配的字符串,flags为可选参数修饰符。

# 导入re模块,注意match函数是从起始位置匹配的。如果起始位置匹配失败,则返回None
import re
#match()函数适合匹配是否以xxxx开始的字符串,因为其从头开始匹配的
ret = re.match("abc","aBCabc",re.I) #可选参数re.I表示忽略大小写,后续详细解释。
print(ret.group()) #aBC
ret1 = re.match("abc","aBCabc")
print(ret1.group()) # 'NoneType' object has no attribute 'group'

正则表达式可以包含一些可选标志修饰符来控制匹配的模式。修饰符被指定为一个可选的标志。多个标志可以通过按位 OR(|) 它们来指定。如 re.I | re.M 被设置成 I 和 M 标志:

修饰符 描述
re.I 使匹配对大小写不敏感
re.L 做本地化识别(locale-aware)匹配
re.M 多行匹配,影响 ^ 和 $
re.S 使 . 匹配包括换行在内的所有字符
re.U 根据Unicode字符集解析字符。这个标志影响 \w, \W, \b, \B.
re.X 该标志通过给予你更灵活的格式以便你将正则表达式写得更易于理解。

2.正则表达式的语法

2.1正则表达式对字符(单个字符)的表示

字符 功能
. 匹配任意1个字符(除了\n),注意因为.表示任意一个字符,所以如果匹配‘.'则需要用转义字符\.来表示
[ ] 匹配[ ]中列举的字符,如果[a-zA-Z0-9],[a-zA-Z]表示所有字母和数字,后者表示所有字母,注意中间没有空格符号。
\d 匹配数字,即0-9
\D 匹配非数字,即不是数字
\s 匹配空白,即 空格,tab键
\S 匹配非空白
\w 匹配单词字符,即a-z、A-Z、0-9、_
\W 匹配非单词字符
# 导入re模块
import re
#1.测试.的使用,匹配任意字符开始的字符串
str='abc'
ret =re.match("..",str)
print(ret.group()) #ab.用两个..就表示只要str字符串开头是两个字符即可。
ret1 = re.match("....",str) #这种情况则会报错,因为str只有三个字符。

#2.匹配[]范围内的任意一个字符开头的字符串
str1 = "abcABC*?//"
str2 = "3afasdlfadsf"
ret2 = re.match("[a-z]",str1).group() #a
ret3 = re.match("[123456]",str2).group() #3,[1-6]等价[123456]

#3./d的使用,表示匹配任意一个数字
str3 = "第5名是我"
ret4 = re.match("第\d名",str3).group()
print(ret4) #第5名

ret4 = re.match("第[0-9]名",str3) #同样是表示0-9任意一个,[0-9]和\d效果一样
print(ret4.group()) #第5名

总结:注意上面对字符的匹配都是表示一个任意字符,或者某个范围内的任意一个字符,属于单个字符匹配。而实际开发中肯定都是用一个子串(多个字符)去匹配整个字符串。那么如何表示呢,请继续下去。

2.2正则表达式匹配多个字符:数量的表示

匹配多个字符的相关格式,其实就是单个字符加上数量。注意下面数量的匹配都是针对前一个字符。

字符 功能
* 匹配前一个字符出现0次或者无限次,即可有可无
+ 匹配前一个字符出现1次或者无限次,即至少有1次
? 匹配前一个字符出现1次或者0次,即要么有1次,要么没有
{m} 匹配前一个字符出现m次
{m,} 匹配前一个字符至少出现m次
{m,n} 匹配前一个字符出现从m到n次
# 导入re模块
import re

#1.匹配第一个是大写字母,第二个小写字母,后面只要是小写字母即可。
ret = re.match("[A-Z][a-z]*","Aafngsdfgnlsdf1224343")
print(ret.group()) #Aafngsdfgnlsdf
ret1 = re.match("[A-Z][a-z]*","AaAaaa34bbb")
print(ret1.group()) #Aa ,因为后面不是小写字母所以没匹配到。

#匹配下面字符串是否以字母或者下划线开头
ret = re.match("[a-zA-Z_]+[\w_]*","name1") #解释1:[a-zA-Z_]+字母下划线至少出现一次
print(ret.group()) #name1

ret = re.match("[a-zA-Z_]+[\w_]*","_name") #解释2:[\w_]*表示字母,数据下划线出现任意次
print(ret.group()) #_name

ret = re.match("[a-zA-Z_]+[\w_]*","2_name")
#print(ret.group()) #报错,因为匹配不上,返回None.

#3.匹配前面字符出现0次或者1次使用?
ret = re.match("[1-9]?[0-9]","7")
print(ret.group()) #7

ret = re.match("[1-9]?[0-9]","33")
print(ret.group()) #33

ret = re.match("[1-9]?[0-9]","09")
print(ret.group()) #0

#4.前面字符出现n此,或者m-n范围内的任意次
ret = re.match("[a-zA-Z0-9_]{6}","dsa2A9nfdsf")
print(ret.group()) #dsa2A9,匹配前6位是数字字符下划线即可

ret = re.match("[a-zA-Z0-9_]{3,8}","aSjsd239344")
ret1 = re.match("[a-zA-Z0-9_]{3,8}","aSjs")
print(ret1.group()) #aSjs,注意匹配前一个字符出现3-8次,只要这个范围内都算匹配成功,按实际匹配
print(ret.group()) #aSjsd239 匹配前一个字符出现3到8次

ret = re.match("[a-z0-9A-Z_]{3,}","a2")
print(ret.group()) #至少出现3次,所以如果只有两个的话,返回None,调用报错。

总结:单个字符匹配,多个字符匹配上面都已经演示过了,基本可以完成大多数字符串的匹配了。但是上面过于字符串的匹配都是从头开始匹配的,而实际开发中可能是从字符串中间,后者结尾开始匹配的。keep reading....

2.3.正则表达式:匹配边界的问题

字符 功能
^ 匹配字符串开头
$ 匹配字符串结尾
\b

匹配一个单词边界,也就是指单词和空格间的位置。例如, 'er\b' 可以匹配"never" 中的 'er',但不能匹配 "verb" 中的 'er'。

\B 匹配非单词边界,'er\B' 能匹配 "verb" 中的 'er',但不能匹配 "never" 中的 'er'。
# 导入re模块
import re

# 匹配以@qq.com邮箱结尾的邮箱地址
#1.不适用匹配字符串结尾的$来实现,注意.要用转义字符,一般邮箱的长度都是4-30位
ret = re.match("[\w]{4,30}@qq\.com", "xiaoWang@qq.com")
print(ret.group()) #xiaoWang@qq.com

# 通过$来确定末尾,效率更高
ret = re.match("[\w]{4,30}@qq\.com$", "xiaoWang@qq.com")
print(ret.group()) #xiaoWang@qq.com

ret = re.match("[\w]{4,30}@qq\.com$", "xiaoWang@qq.com.cn")
#print(ret.group()) #报错

到此这篇关于Python中正则表达式对单个字符,多个字符和匹配边界等使用的文章就介绍到这了,更多相关Python 单字符,多字符匹配内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2021-01-25

Python正则表达式匹配字符串中的数字

1.使用"\d+"匹配全数字 代码: import re zen = "Arizona 479, 501, 870. Carlifornia 209, 213, 650." m = re.findall("\d+", zen) print(m) 结果: ['479', '501', '870', '209', '213', '650'] 但是上述这种方式也会引入非纯数据,例子如下: import re zen = "Arizona 47

python使用正则表达式匹配字符串开头并打印示例

本文实例讲述了python使用正则表达式匹配字符串开头并打印的方法.分享给大家供大家参考,具体如下: import re s="name=z1hangshan username=fff url=www.baidu.com password=ddd256" s2="username=fff name=z1hangshan url=www.baidu.com password=ddd256" #p=re.compile(r'((?:\s)name=(\S)+)') p=

使用Python 正则匹配两个特定字符之间的字符方法

如下所示: # -*- coding: cp936 -*- import re   string = "xxxxxxxxxxxxxxxxxxxxxxxx entry '某某内容' for aaaaaaaaaaaaaaaaaa" result = re.findall(".*entry(.*)for.*",string) for x in result:     print x # '某某内容' 以上这篇使用Python 正则匹配两个特定字符之间的字符方法就是小编分享

Python 正则表达式匹配数字及字符串中的纯数字

Python 正则表达式匹配数字 电话号码:\d{3}-\d{8}|\d{4}-\d{7} QQ号:[1-9][0-9]{4,} 中国邮政编码:[1-9]\d{5}(?!\d) 身份证:\d{15}|\d{18} ip地址:\d+\.\d+\.\d+\.\d+ [1-9]\d*      正整数 -[1-9]\d* 负整数 -?[1-9]\d* 整数 [1-9]\d*|0 非负整数 -[1-9]\d*|0 非正整数 [1-9]\d*\.\d*|0\.\d*[1-9]\d*$ 正浮点数 -([1-

python正则表达式匹配不包含某几个字符的字符串方法

一.匹配目标 文件中所有以https?://开头,以.jpg|.png|.jpeg结尾的字符串 二.尝试过程 1) 自然想到正则表达式r'(https?://.*?.jpg|https?://.*?.png|https?://.*?.jpeg)简化书写为r'(https?://.*?\.(?:jpg|png|jpeg) 匹配结果:['http://sdsdsdadadsdsdsddsdsdawwii,https://sdsdoijcjz.jpg']发现结果并非我们想要的,仔细查看,结果中出现了,

python正则表达式匹配[]中间为任意字符的实例

如下所示: result = re.search('^\[[\S\s]*\]$',str) print(result) print(result.group()) <_sre.SRE_Match object; span=(0, 35), match="['rtb-c09v2lff02' 'rtb-7g1yn4rvmx']"> ['rtb-c09v2lff02' 'rtb-7g1yn4rvmx'] 以上这篇python正则表达式匹配[]中间为任意字符的实例就是小编分享给大家

Python做简单的字符串匹配详解

Python做简单的字符串匹配详解 由于需要在半结构化的文本数据中提取一些特定格式的字段.数据辅助挖掘分析工作,以往都是使用Matlab工具进行结构化数据处理的建模,matlab擅长矩阵处理.结构化数据的计算,Python具有与matlab共同的特点:语法简洁.库丰富,对算法仿真来说都是一门简洁易用的语言. Python做字符串匹配相对来说上手比较容易,且具有成熟的字符串处理库re供我们使用: 在re库的帮助下,只需简单的两步就可完成匹配工作,对做数据分析/算法的工作者来说,轻松了许多: ste

python字符串中匹配数字的正则表达式

Python 正则表达式简介 正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配. Python 自1.5版本起增加了re 模块,它提供 Perl 风格的正则表达式模式. re 模块使 Python 语言拥有全部的正则表达式功能. compile 函数根据一个模式字符串和可选的标志参数生成一个正则表达式对象.该对象拥有一系列方法用于正则表达式匹配和替换. re 模块也提供了与这些方法功能完全一致的函数,这些函数使用一个模式字符串做为它们的第一个参数. 本章节给大家介

对python 匹配字符串开头和结尾的方法详解

1.你需要通过指定的文本模式去检查字符串的开头或者结尾,比如文件名后缀,URL Scheme 等等.检 查 字 符 串 开 头 或 结 尾 的 一 个 简 单 方 法 是 使 用str.startswith() 或 者 是str.endswith()方法.比如: >>> filename = 'spam.txt' >>> filename.endswith('.txt') True >>> filename.startswith('file:') Fa

python 环境变量和import模块导入方法(详解)

1.定义 模块:本质就是.py结尾的文件(逻辑上组织python代码)模块的本质就是实现一个功能 文件名就是模块名称 包: 一个有__init__.py的文件夹:用来存放模块文件 2.导入模块 import 模块名 form 模块名 import * from 模块名 import 模块名 as 新名称 3. 导入模块本质 import 模块名 ===> 将模块中所有的数据赋值给模块名,调用时需要模块名.方法名() from 模块名 import 方法名 ==>将该方法单独放到当前文件运行一遍

基于JavaScript中字符串的match与replace方法(详解)

1.match方法 match() 方法可在字符串内检索指定的值,或找到一个或多个正则表达式的匹配. match()方法的返回值为:存放匹配结果的数组. 2.replace方法 replace() 方法用于在字符串中用一些字符替换另一些字符,或替换一个与正则表达式匹配的子串. replace方法的返回值为:一个新的字符串. 3.说明 以上2个方法的参数在使用正则表达式时主要添加全局g,这样才能对字符串进行全部匹配或者替换. 示例代码: <!DOCTYPE html> <html lang

对python中大文件的导入与导出方法详解

1.csv文件的导入和导出 通过一个矩阵导出为csv文件,将csv文件导入为矩阵 将csv文件导入到一个矩阵中 import numpy my_matrix = numpy.loadtxt(open("c:\\1.csv","rb"),delimiter=",",skiprows=0) 将矩阵导出到本地csv中 numpy.savetxt('new.csv', my_matrix, delimiter = ',') 未完待续... 也可以使用pi

python修改文件内容的3种方法详解

这篇文章主要介绍了python修改文件内容的3种方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.修改原文件方式 def alter(file,old_str,new_str): """ 替换文件中的字符串 :param file:文件名 :param old_str:就字符串 :param new_str:新字符串 :return: """ file_data = "&qu

对python numpy数组中冒号的使用方法详解

python中冒号实际上有两个意思:1.默认全部选择:2. 指定范围. 下面看例子 定义数组 X=array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]) 输出为5x4二维数组 第一种意思,默认全部选择: 如,X[:,0]就是取矩阵X的所有行的第0列的元素,X[:,1] 就是取所有行的第1列的元素 第二种意思,指定范围,注意这里含左不含右 如,X[:, m:n]即取矩阵X的所有行中的的第m到n-1列数据,含左不含右

对python xlrd读取datetime类型数据的方法详解

使用xlrd读取出来的时间字段是类似41410.5083333的浮点数,在使用时需要转换成对应的datetime类型,下面代码是转换的方法: 首先需要引入xldate_as_tuple函数 from xlrd import xldate_as_tuple 使用方法如下: #d是从excel中读取出来的浮点数 xldate_as_tuple(d,0) xldate_as_tuple第二个参数有两种取值,0或者1,0是以1900-01-01为基准的日期,而1是1904-01-01为基准的日期.该函数

对python 中class与变量的使用方法详解

python中的变量定义是很灵活的,很容易搞混淆,特别是对于class的变量的定义,如何定义使用类里的变量是我们维护代码和保证代码稳定性的关键. #!/usr/bin/python #encoding:utf-8 global_variable_1 = 'global_variable' class MyClass(): class_var_1 = 'class_val_1' # define class variable here def __init__(self, param): self

对Python发送带header的http请求方法详解

简单的header import urllib2 request = urllib2.Request('http://example.com/') request.add_header('User-Agent', 'fake-client') response = urllib2.urlopen(request) print request.read() 包含较多元素的header import urllib,urllib2 url = 'http://example.com/' headers

对python列表里的字典元素去重方法详解

如下所示: def list_dict_duplicate_removal(): data_list = [{"a": "123", "b": "321"}, {"a": "123", "b": "321"}, {"b": "321", "a": "123"}] run