深入理解Python爬虫代理池服务

在公司做分布式深网爬虫,搭建了一套稳定的代理池服务,为上千个爬虫提供有效的代理,保证各个爬虫拿到的都是对应网站有效的代理IP,从而保证爬虫快速稳定的运行,当然在公司做的东西不能开源出来。不过呢,闲暇时间手痒,所以就想利用一些免费的资源搞一个简单的代理池服务。

1、问题

代理IP从何而来?

刚自学爬虫的时候没有代理IP就去西刺、快代理之类有免费代理的网站去爬,还是有个别代理能用。当然,如果你有更好的代理接口也可以自己接入。

免费代理的采集也很简单,无非就是:访问页面页面 —> 正则/xpath提取 —> 保存

如何保证代理质量?

可以肯定免费的代理IP大部分都是不能用的,不然别人为什么还提供付费的(不过事实是很多代理商的付费IP也不稳定,也有很多是不能用)。所以采集回来的代理IP不能直接使用,可以写检测程序不断的去用这些代理访问一个稳定的网站,看是否可以正常使用。这个过程可以使用多线程或异步的方式,因为检测代理是个很慢的过程。

采集回来的代理如何存储?

这里不得不推荐一个高性能支持多种数据结构的NoSQL数据库SSDB,用于代理Redis。支持队列、hash、set、k-v对,支持T级别数据。是做分布式爬虫很好中间存储工具。

如何让爬虫更简单的使用这些代理?

答案肯定是做成服务咯,python有这么多的web框架,随便拿一个来写个api供爬虫调用。这样有很多好处,比如:当爬虫发现代理不能使用可以主动通过api去delete代理IP,当爬虫发现代理池IP不够用时可以主动去refresh代理池。这样比检测程序更加靠谱。

2、代理池设计

代理池由四部分组成:

ProxyGetter:

代理获取接口,目前有5个免费代理源,每调用一次就会抓取这个5个网站的最新代理放入DB,可自行添加额外的代理获取接口;

DB:

用于存放代理IP,现在暂时只支持SSDB。至于为什么选择SSDB,大家可以参考这篇文章,个人觉得SSDB是个不错的Redis替代方案,如果你没有用过SSDB,安装起来也很简单,可以参考这里;

Schedule:

计划任务用户定时去检测DB中的代理可用性,删除不可用的代理。同时也会主动通过ProxyGetter去获取最新代理放入DB;

ProxyApi:

代理池的外部接口,由于现在这么代理池功能比较简单,花两个小时看了下Flask,愉快的决定用Flask搞定。功能是给爬虫提供get/delete/refresh等接口,方便爬虫直接使用。

3、代码模块

Python中高层次的数据结构,动态类型和动态绑定,使得它非常适合于快速应用开发,也适合于作为胶水语言连接已有的软件部件。用Python来搞这个代理IP池也很简单,代码分为6个模块:

Api:

api接口相关代码,目前api是由Flask实现,代码也非常简单。客户端请求传给Flask,Flask调用ProxyManager中的实现,包括get/delete/refresh/get_all;

DB:

数据库相关代码,目前数据库是采用SSDB。代码用工厂模式实现,方便日后扩展其他类型数据库;

Manager:

get/delete/refresh/get_all等接口的具体实现类,目前代理池只负责管理proxy,日后可能会有更多功能,比如代理和爬虫的绑定,代理和账号的绑定等等;

ProxyGetter:

代理获取的相关代码,目前抓取了快代理、代理66、有代理、西刺代理、guobanjia这个五个网站的免费代理,经测试这个5个网站每天更新的可用代理只有六七十个,当然也支持自己扩展代理接口;

Schedule:

定时任务相关代码,现在只是实现定时去刷新代码,并验证可用代理,采用多进程方式;

Util:

存放一些公共的模块方法或函数,包含GetConfig:读取配置文件config.ini的类,ConfigParse: 集成重写ConfigParser的类,使其对大小写敏感, Singleton:实现单例,LazyProperty:实现类属性惰性计算。等等;

其他文件:

配置文件:Config.ini,数据库配置和代理获取接口配置,可以在GetFreeProxy中添加新的代理获取方法,并在Config.ini中注册即可使用;

4、安装

下载代码:

Python

git clone git@github.com:jhao104/proxy_pool.git
或者直接到https://github.com/jhao104/proxy_pool 下载zip文件
git clone git@github.com:jhao104/proxy_pool.git
或者直接到https://github.com/jhao104/proxy_pool 下载zip文件

安装依赖:

Python

pip install -r requirements.txt
pip install -r requirements.txt

启动:

Python

需要分别启动定时任务和api
到Config.ini中配置你的SSDB
到Schedule目录下:
>>>python ProxyRefreshSchedule.py
到Api目录下:
>>>python ProxyApi.py
需要分别启动定时任务和api
到Config.ini中配置你的SSDB
到Schedule目录下:
>>>python ProxyRefreshSchedule.py
到Api目录下:
>>>python ProxyApi.py

5、使用

定时任务启动后,会通过代理获取方法fetch所有代理放入数据库并验证。此后默认每20分钟会重复执行一次。定时任务启动大概一两分钟后,便可在SSDB中看到刷新出来的可用的代理:

useful_proxy

启动ProxyApi.py后即可在浏览器中使用接口获取代理,一下是浏览器中的截图:

index页面:

get页面:

get_all页面:

爬虫中使用,如果要在爬虫代码中使用的话, 可以将此api封装成函数直接使用,例如:

Python

import requests
def get_proxy():
 return requests.get("http://127.0.0.1:5000/get/").content
def delete_proxy(proxy):
 requests.get("http://127.0.0.1:5000/delete/?proxy={}".format(proxy))
# your spider code
def spider():
 # ....
 requests.get('https://www.example.com', proxies={"http": "http://{}".format(get_proxy)})
 # ....
import requests
def get_proxy():
 return requests.get("http://127.0.0.1:5000/get/").content
def delete_proxy(proxy):
 requests.get("http://127.0.0.1:5000/delete/?proxy={}".format(proxy))
# your spider code
def spider():
 # ....
 requests.get('https://www.example.com', proxies={"http": "http://{}".format(get_proxy)})
 # ....

6、最后

时间仓促,功能和代码都比较简陋,以后有时间再改进。喜欢的在github上给个star。感谢!

github项目地址:https://github.com/jhao104/proxy_pool

总结

以上所述是小编给大家介绍的Python爬虫代理池服务,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

您可能感兴趣的文章:

  • Python实现的异步代理爬虫及代理池
  • Python3实现并发检验代理池地址的方法
时间: 2018-02-26

Python实现的异步代理爬虫及代理池

使用python asyncio实现了一个异步代理池,根据规则爬取代理网站上的免费代理,在验证其有效后存入redis中,定期扩展代理的数量并检验池中代理的有效性,移除失效的代理.同时用aiohttp实现了一个server,其他的程序可以通过访问相应的url来从代理池中获取代理. 源码 Github 环境 Python 3.5+ Redis PhantomJS(可选) Supervisord(可选) 因为代码中大量使用了asyncio的async和await语法,它们是在Python3.5中才提供

Python3实现并发检验代理池地址的方法

本文实例讲述了Python3实现并发检验代理池地址的方法.分享给大家供大家参考,具体如下: #encoding=utf-8 #author: walker #date: 2016-04-14 #summary: 用协程/线程池并发检验代理有效性 import os, sys, time import requests from concurrent import futures cur_dir_fullpath = os.path.dirname(os.path.abspath(__file__

Python爬虫代理池搭建的方法步骤

一.为什么要搭建爬虫代理池 在众多的网站防爬措施中,有一种是根据ip的访问频率进行限制,即在某一时间段内,当某个ip的访问次数达到一定的阀值时,该ip就会被拉黑.在一段时间内禁止访问. 应对的方法有两种: 1. 降低爬虫的爬取频率,避免IP被限制访问,缺点显而易见:会大大降低爬取的效率. 2. 搭建一个IP代理池,使用不同的IP轮流进行爬取. 二.搭建思路 1.从代理网站(如:西刺代理.快代理.云代理.无忧代理)爬取代理IP: 2.验证代理IP的可用性(使用代理IP去请求指定URL,根据响应验证

Python3爬虫关于代理池的维护详解

我们在上一节了解了代理的设置方法,利用代理我们可以解决目标网站封 IP 的问题,而在网上又有大量公开的免费代理,其中有一部分可以拿来使用,或者我们也可以购买付费的代理 IP,价格也不贵.但是不论是免费的还是付费的,都不能保证它们每一个都是可用的,毕竟可能其他人也可能在用此 IP 爬取同样的目标站点而被封禁,或者代理服务器突然出故障或网络繁忙.一旦我们选用了一个不可用的代理,势必会影响我们爬虫的工作效率. 所以说,在用代理时,我们需要提前做一下筛选,将不可用的代理剔除掉,保留下可用代理,接下来在获

python3 requests中使用ip代理池随机生成ip的实例

啥也不说了,直接上代码吧! # encoding:utf-8 import requests # 导入requests模块用于访问测试自己的ip import random pro = ['1.119.129.2:8080', '115.174.66.148', '113.200.214.164'] # 在(http://www.xicidaili.com/wt/)上面收集的ip用于测试 # 没有使用字典的原因是 因为字典中的键是唯一的 http 和https 只能存在一个 所以不建议使用字典

python多线程+代理池爬取天天基金网、股票数据过程解析

简介 提到爬虫,大部分人都会想到使用Scrapy工具,但是仅仅停留在会使用的阶段.为了增加对爬虫机制的理解,我们可以手动实现多线程的爬虫过程,同时,引入IP代理池进行基本的反爬操作. 本次使用天天基金网进行爬虫,该网站具有反爬机制,同时数量足够大,多线程效果较为明显. 技术路线 IP代理池 多线程 爬虫与反爬 编写思路 首先,开始分析天天基金网的一些数据.经过抓包分析,可知: ./fundcode_search.js包含所有基金的数据,同时,该地址具有反爬机制,多次访问将会失败的情况. 同时,经

详解基于Scrapy的IP代理池搭建

一.为什么要搭建爬虫代理池 在众多的网站防爬措施中,有一种是根据ip的访问频率进行限制,即在某一时间段内,当某个ip的访问次数达到一定的阀值时,该ip就会被拉黑.在一段时间内禁止访问. 应对的方法有两种: 1. 降低爬虫的爬取频率,避免IP被限制访问,缺点显而易见:会大大降低爬取的效率. 2. 搭建一个IP代理池,使用不同的IP轮流进行爬取. 二.搭建思路 1.从代理网站(如:西刺代理.快代理.云代理.无忧代理)爬取代理IP: 2.验证代理IP的可用性(使用代理IP去请求指定URL,根据响应验证

Python3爬虫里关于代理的设置总结

在前面我们介绍了多种请求库,如 Requests.Urllib.Selenium 等.我们接下来首先贴近实战,了解一下代理怎么使用,为后面了解代理池.ADSL 拨号代理的使用打下基础. 下面我们来梳理一下这些库的代理的设置方法. 1. 获取代理 在做测试之前,我们需要先获取一个可用代理,搜索引擎搜索"代理"关键字,就可以看到有许多代理服务网站,在网站上会有很多免费代理,比如西刺:http://www.xicidaili.com/,这里列出了很多免费代理,但是这些免费代理大多数情况下都是

java并发编程_线程池的使用方法(详解)

一.任务和执行策略之间的隐性耦合 Executor可以将任务的提交和任务的执行策略解耦 只有任务是同类型的且执行时间差别不大,才能发挥最大性能,否则,如将一些耗时长的任务和耗时短的任务放在一个线程池,除非线程池很大,否则会造成死锁等问题 1.线程饥饿死锁 类似于:将两个任务提交给一个单线程池,且两个任务之间相互依赖,一个任务等待另一个任务,则会发生死锁:表现为池不够 定义:某个任务必须等待池中其他任务的运行结果,有可能发生饥饿死锁 2.线程池大小 注意:线程池的大小还受其他的限制,如其他资源池: