Python3爬虫中识别图形验证码的实例讲解

本节我们首先来尝试识别最简单的一种验证码,图形验证码,这种验证码出现的最早,现在也很常见,一般是四位字母或者数字组成的,例如中国知网的注册页面就有类似的验证码,链接为:http://my.cnki.net/elibregister/commonRegister.aspx,页面:

表单的最后一项就是图形验证码,我们必须完全输入正确图中的字符才可以完成注册。

1.本节目标

本节我们就以知网的验证码为例,讲解一下利用 OCR 技术识别此种图形验证码的方法。

2. 准备工作

识别图形验证码需要的库有 Tesserocr,如果没有安装可以参考第一章的安装说明。

3. 获取验证码

为了便于实验,我们先将验证码的图片保存到本地,以供测试。

打开开发者工具,找到验证码元素,可以看到这是一张图片,它的 src 属性是 CheckCode.aspx,在这里我们直接将这个链接打开:http://my.cnki.net/elibregister/CheckCode.aspx,就可以看到一个验证码,直接右键保存下来即可,将名称命名为 code.jpg,如图 8-2 所示:

这样我们就可以得到一张验证码图片供下面测试识别使用了。

4. 识别测试

接下来我们新建一个项目,将验证码图片放到项目根目录下,用 Tesserocr 库来识别一下该验证码试试,代码如下:

import tesserocr
from PIL import Image
image = Image.open('code.jpg')
result = tesserocr.image_to_text(image)
print(result)

在这里我们首先新建了一个 Image 对象,然后调用了 Tesserocr 的 image_to_text() 方法,传入该 Image 对象即可完成识别,实现过程非常简单,识别结果如下:

JR42

另外 Tesserocr 还有一个更加简单的方法直接将图片文件转为字符串可以达到同样的效果,代码如下:

import tesserocr
print(tesserocr.file_to_text('image.png'))

不过经测试此种方法的识别效果不如上一种方法好。

5. 验证码处理

如上的图片识别基本没有难度,只是新建一个 Image 对象,然后调用 image_to_text() 方法即可得出图片的识别结果。

接下来我们换一个验证码试一下,命名为 code2.jpg,如图 8-3 所示:

重新用下面的代码测试一下:

import tesserocr
from PIL import Image
image = Image.open('code2.jpg')
result = tesserocr.image_to_text(image)
print(result)

这时可以看到如下输出结果:

FFKT

发现这次识别和实际的结果有所偏差,这是因为验证码内的多余线条干扰了图片的识别。

对于这种情况,我们还需要做一下额外的处理,如转灰度、二值化等操作。

我们可以利用 Image 对象的 convert() 方法参数传入 L 即可将图片转化为灰度图像,代码如下:

image = image.convert('L')
image.show()

传入 1 即可将图片进行二值化处理:

image = image.convert('1')
image.show()

另外我们还可以指定二值化的阈值,上面的方法采用的是默认阈值127,不过我们不能用原图直接转化,可以先转为灰度图像,然后再指定二值化阈值转化,代码如下:

image = image.convert('L')
threshold = 80
table = []
for i in range(256):
    if i < threshold:
        table.append(0)
    else:
        table.append(1)
image = image.point(table, '1')
image.show()

在这里我们指定了一个变量 threshold 代表二值化阈值,阈值设置为 80,处理之后我们看一下结果,如图 8-4 所示:

经过处理之后我们发现原来的验证码中的线条已经被去除了,而且整个验证码变得黑白分明,这时重新识别验证码,代码如下:

import tesserocr
from PIL import Image
image = Image.open('code2.jpg')
image = image.convert('L')
threshold = 127
table = []
for i in range(256):
    if i < threshold:
        table.append(0)
    else:
        table.append(1)
image = image.point(table, '1')
result = tesserocr.image_to_text(image)
print(result)

即可发现运行结果变成了:

PFRT

识别正确。

可见对于一些有干扰的图片,我们做一些灰度和二值化处理,会提高其识别正确率。

6. 本节代码

本节代码地址为:https://github.com/Python3WebSpider/CrackImageCode

7. 结语

本节我们了解了利用 Tesserocr 识别验证码的过程,对于简单的图形验证码我们可以直接用它来得到结果,如果要提高识别的准确度还可以对验证码图片做一下预处理。

以上就是Python3爬虫中识别图形验证码的实例讲解的详细内容,更多关于Python3爬虫识别图形验证码的资料请关注我们其它相关文章!

时间: 2020-07-30

python 生成图形验证码的方法示例

日常在网站使用过程中经常遇到图形验证,今天准备自己做个图形验证码,这算是个简单的功能,也适合新手练习的,便于自己学习. 主要用到的库--PIL图像处理库,简单的思路,我们需要随机的颜色,随机的数字或字母,随机的线条.点作为干扰元素 拼凑成一张图片. 生成随机颜色,返回的是rgb三色. def getRandomColor(): r = random.randint(0, 255) g = random.randint(0, 255) b = random.randint(0, 255) retu

mac使用python识别图形验证码功能

前言 最近在研究验证码相关的操作,所以准备记录下安装以及使用的过程.虽然之前对验证码的破解有所了解的,但是之前都是简单使用之后就不用了,没有记录一个详细的过程,所以后面再用起来也要重新从网上查找资料比较麻烦,所以这里准备对研究过程的关键点做一个记录. 首先这篇文章,主要是研究图形验证码,后期会不定时拓展内容. 在网上查了很多版本的图形验证码识别,目前看到最多的两个模块是pytesseract和tesserocr,但是因为我这里安装tesserocr的时候各种出错,所以最终我锁定了使用pytess

python web框架Flask实现图形验证码及验证码的动态刷新实例

下列代码都是以自己的项目实例讲述的,相关的文本内容很少,主要说明全在代码注释中 自制图形验证码 这里所说的图形验证码都是自制的图形,通过画布.画笔.画笔字体的颜色绘制而成的.将验证码封装成一个类比较好管理,代码里有绝对详细的注释,当然大家可以直接复制. 里面涉及的字体都是从系统电脑上自带的,大家直接复制当前目录下就可以了. 主目录/utils/captcha/__init__.py import random import string # Image:一个画布 # ImageDraw:一个画笔

python生成随机图形验证码详解

使用python生成随机图片验证码,需要使用pillow模块 1.安装pillow模块 pip install pillow 2.pillow模块的基本使用 1.创建图片 from PIL import Image #定义使用Image类实例化一个长为400px,宽为400px,基于RGB的(255,255,255)颜色的图片 img1=Image.new(mode="RGB",size=(400,400),color=(255,255,255)) #把生成的图片保存为"pi

[机器视觉]使用python自动识别验证码详解

前言 CAPTCHA全称Completely Automated Public Turing Test to Tell Computers and Humans Apart,即全自动区分人机的图灵测试.这也是验证码诞生的主要任务.但是随着近年来大数据运算和机器视觉的发展,用机器视觉识别图像已经变得非常容易,过去用于区分人机的验证码也开始变得不再安全. 接下来就让我们从零开始,深入图像处理和算法构建,来看看使用机器视觉来识别过时的验证码( 如下所示 )究竟可以有多简单. 载入需要的程序包 & 设置

MySQL数据库设计之利用Python操作Schema方法详解

弓在箭要射出之前,低声对箭说道,"你的自由是我的".Schema如箭,弓似Python,选择Python,是Schema最大的自由.而自由应是一个能使自己变得更好的机会. Schema是什么? 不管我们做什么应用,只要和用户输入打交道,就有一个原则--永远不要相信用户的输入数据.意味着我们要对用户输入进行严格的验证,web开发时一般输入数据都以JSON形式发送到后端API,API要对输入数据做验证.一般我都是加很多判断,各种if,导致代码很丑陋,能不能有一种方式比较优雅的验证用户数据呢

python学习 流程控制语句详解

###################### 分支语句 python3.5 ################ #代码的缩进格式很重要 建议4个空格来控制 #根据逻辑值(True,Flase)判断程序的运行方向 # Ture:表示非空的量(String,tuple元组 .list.set.dictonary),所有非零的数字 # False:0,None .空的量 #逻辑表达式 可以包含 逻辑运算符 and or not if: ##################################

基于python的字节编译详解

定义: 把模块定义成二进制语言程序的这个过程叫做字节编译 python是解释型语言,它的字节编译是由解释器完成的 编译py文件,生成pyc结尾的文件的方法, 方法一: Import zipfile.py 方法二: 以上这篇基于python的字节编译详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

Python在信息学竞赛中的运用及Python的基本用法(详解)

前言 众所周知,Python是一种非常实用的语言.但是由于其运算时的低效和解释型编译,在信息学竞赛中并不用于完成算法程序.但正如LRJ在<算法竞赛入门经典-训练指南>中所说的一样,如果会用Python,在进行一些小程序的编写,如数据生成器时将会非常方便,它的语法决定了其简约性.本文主要介绍一下简单的Python用法,不会深入. Python的安装和实用 Linux(以Ubuntu系统为例) 一般的Linux都自带了Python,在命令行中输入Python即可进入 如果没有出现上图的文字,可以使

Python MD5加密实例详解

详解Python MD5加密 Python 3下MD5加密 # 由于MD5模块在python3中被移除 # 在python3中使用hashlib模块进行md5操作 import hashlib # 待加密信息 str = 'this is a md5 test.' # 创建md5对象 hl = hashlib.md5() # Tips # 此处必须声明encode # 若写法为hl.update(str) 报错为: Unicode-objects must be encoded before h

Python 多线程的实例详解

 Python 多线程的实例详解 一)线程基础 1.创建线程: thread模块提供了start_new_thread函数,用以创建线程.start_new_thread函数成功创建后还可以对其进行操作. 其函数原型: start_new_thread(function,atgs[,kwargs]) 其参数含义如下: function: 在线程中执行的函数名     args:元组形式的参数列表.     kwargs: 可选参数,以字典的形式指定参数 方法一:通过使用thread模块中的函数创

Python实现调度算法代码详解

调度算法 操作系统管理了系统的有限资源,当有多个进程(或多个进程发出的请求)要使用这些资源时,因为资源的有限性,必须按照一定的原则选择进程(请求)来占用资源.这就是调度.目的是控制资源使用者的数量,选取资源使用者许可占用资源或占用资源. 在操作系统中调度是指一种资源分配,因而调度算法是指:根据系统的资源分配策略所规定的资源分配算法.对于不同的的系统和系统目标,通常采用不同的调度算法,例如,在批处理系统中,为了照顾为数众多的段作业,应采用短作业优先的调度算法:又如在分时系统中,为了保证系统具有合理

Python模块WSGI使用详解

WSGI(Web Server Gateway Interface):Web服务网关接口,是Python中定义的服务器程序和应用程序之间的接口. Web程序开发中,一般分为服务器程序和应用程序.服务器程序负责对socket服务的数据进行封装和整理,而应用程序则负责对Web请求进行逻辑处理. Web应用本质上也是一个socket服务器,用户的浏览器就是一个socket客户端. 我们先用socket编程实现一个简单的Web服务器: import socket def handle_request(c