Python+matplotlib绘制不同大小和颜色散点图实例

 具有不同标记颜色和大小的散点图演示。

演示结果:

实现代码:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook

# Load a numpy record array from yahoo csv data with fields date, open, close,
# volume, adj_close from the mpl-data/example directory. The record array
# stores the date as an np.datetime64 with a day unit ('D') in the date column.
with cbook.get_sample_data('goog.npz') as datafile:
  price_data = np.load(datafile)['price_data'].view(np.recarray)
price_data = price_data[-250:] # get the most recent 250 trading days

delta1 = np.diff(price_data.adj_close) / price_data.adj_close[:-1]

# Marker size in units of points^2
volume = (15 * price_data.volume[:-2] / price_data.volume[0])**2
close = 0.003 * price_data.close[:-2] / 0.003 * price_data.open[:-2]

fig, ax = plt.subplots()
ax.scatter(delta1[:-1], delta1[1:], c=close, s=volume, alpha=0.5)

ax.set_xlabel(r'$\Delta_i$', fontsize=15)
ax.set_ylabel(r'$\Delta_{i+1}$', fontsize=15)
ax.set_title('Volume and percent change')

ax.grid(True)
fig.tight_layout()

plt.show()

总结

以上就是本文关于Python+matplotlib绘制不同大小和颜色散点图实例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

您可能感兴趣的文章:

  • python+matplotlib绘制3D条形图实例代码
  • Python使用matplotlib填充图形指定区域代码示例
  • python+matplotlib实现礼盒柱状图实例代码
  • Python+matplotlib实现填充螺旋实例
  • python+matplotlib实现鼠标移动三角形高亮及索引显示
  • python+matplotlib演示电偶极子实例代码
  • python+matplotlib绘制旋转椭圆实例代码
  • Python+matplotlib实现计算两个信号的交叉谱密度实例
时间: 2018-01-17

Python+matplotlib实现计算两个信号的交叉谱密度实例

 计算两个信号的交叉谱密度 结果展示: 完整代码: import numpy as np import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(2, 1) # make a little extra space between the subplots fig.subplots_adjust(hspace=0.5) dt = 0.01 t = np.arange(0, 30, dt) # Fixing random stat

Python+matplotlib实现填充螺旋实例

填充螺旋演示结果: 实例代码: import matplotlib.pyplot as plt import numpy as np theta = np.arange(0, 8*np.pi, 0.1) a = 1 b = .2 for dt in np.arange(0, 2*np.pi, np.pi/2.0): x = a*np.cos(theta + dt)*np.exp(b*theta) y = a*np.sin(theta + dt)*np.exp(b*theta) dt = dt +

python+matplotlib演示电偶极子实例代码

使用matplotlib.tri.CubicTriInterpolator.演示变化率计算: 完整实例: from matplotlib.tri import ( Triangulation, UniformTriRefiner, CubicTriInterpolator) import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np #---------------------------------

python+matplotlib绘制3D条形图实例代码

本文分享的实例主要实现的是Python+matplotlib绘制一个有阴影和没有阴影的3D条形图,具体如下. 首先看看演示效果: 完整代码如下: import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # setup the figure and axes fig = plt.figure(figsize=(8, 3)) ax1 = fig.add_subplot(121

Python使用matplotlib填充图形指定区域代码示例

本文代码重点在于演示Python扩展库matplotlib.pyplot中fill_between()函数的用法. import numpy as np import matplotlib.pyplot as plt # 生成模拟数据 x = np.arange(0.0, 4.0*np.pi, 0.01) y = np.sin(x) # 绘制正弦曲线 plt.plot(x, y) # 绘制基准水平直线 plt.plot((x.min(),x.max()), (0,0)) # 设置坐标轴标签 pl

python+matplotlib实现礼盒柱状图实例代码

演示结果: 完整代码: import matplotlib.pyplot as plt import numpy as np from matplotlib.image import BboxImage from matplotlib._png import read_png import matplotlib.colors from matplotlib.cbook import get_sample_data class RibbonBox(object): original_image =

python+matplotlib绘制旋转椭圆实例代码

旋转椭圆 实例代码: import matplotlib.pyplot as plt import numpy as np from matplotlib.patches import Ellipse delta = 45.0 # degrees angles = np.arange(0, 360 + delta, delta) ells = [Ellipse((1, 1), 4, 2, a) for a in angles] a = plt.subplot(111, aspect='equal

python+matplotlib实现鼠标移动三角形高亮及索引显示

Trifinder事件实例 实例展示Trifinder对象对的使用.当鼠标移动到一个被分割的三角形上,这个三角形高亮显示,并且它的标签在图标题显示. 展示下演示结果: 完整代码: import matplotlib.pyplot as plt from matplotlib.tri import Triangulation from matplotlib.patches import Polygon import numpy as np def update_polygon(tri): if t

python+matplotlib实现动态绘制图片实例代码(交互式绘图)

本文研究的主要是python+matplotlib实现动态绘制图片(交互式绘图)的相关内容,具体介绍和实现代码如下所示. 最近在研究动态障碍物避障算法,在Python语言进行算法仿真时需要实时显示障碍物和运动物的当前位置和轨迹,利用Anaconda的Python打包集合,在Spyder中使用Python3.5语言和matplotlib实现路径的动态显示和交互式绘图(和Matlab功能类似). Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统

python+matplotlib绘制饼图散点图实例代码

本文是从matplotlib官网上摘录下来的一个实例,实现的功能是Python+matplotlib绘制自定义饼图作为散点图的标记,具体如下. 首先看下演示效果 实例代码: import numpy as np import matplotlib.pyplot as plt # first define the ratios r1 = 0.2 # 20% r2 = r1 + 0.4 # 40% # define some sizes of the scatter marker sizes = n

python Matplotlib底图中鼠标滑过显示隐藏内容的实例代码

在使用Matplotlib画图过程中,有些内容必须鼠标点击或者划过才可以显示,这个问题可以依赖于annotate(s='str' ,xy=(x,y) ,xytext=(l1,l2) ,..)这个函数,其中s 为注释文本内容 , xy 为被注释的坐标点, xytext 为注释文字的坐标位置,其他参数可自行百度哈.当鼠标滑过时候,将其设置为可见,默认情况下为隐藏.下面是一个小例子: # -*- coding: UTF-8 -*- import matplotlib.pyplot as plt fig

Python matplotlib绘图可视化知识点整理(小结)

无论你工作在什么项目上,IPython都是值得推荐的.利用ipython --pylab,可以进入PyLab模式,已经导入了matplotlib库与相关软件包(例如Numpy和Scipy),额可以直接使用相关库的功能. 本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 这样IPython配置为使用你所指定的matplotlib GUI后端(TK/wxPython/PyQt/Mac OS X native/GTK).对于大部分用户而言,默认的后端就已经够用了.Pylab模式

Python OpenCV实现鼠标画框效果

使用Python+OpenCV实现鼠标画框的代码,供大家参考,具体内容如下 # -*-coding: utf-8 -*- """ @Project: IntelligentManufacture @File : user_interaction.py @Author : panjq @E-mail : pan_jinquan@163.com @Date : 2019-02-21 15:03:18 """ # -*- coding: utf-8 -

python matplotlib.pyplot.plot()参数用法

如下所示: matplotlib.pyplot.plot(*args, **kwargs) 绘制线条或标记的轴.参数是一个可变长度参数,允许多个X.Y对可选的格式字符串. 例如,下面的每一个都是合法的: plot(x, y) #plot x, y使用默认的线条样式和颜色 plot(x, y, 'bo') #plot x,y用蓝色圆圈标记 plot(y) #plot y用x作为自变量 plot(y, 'r+') #同上,但是是用红色作为标记 如果x或y是2维的,那么相应的列将被绘制. x.y的任意