决策树的python实现方法

本文实例讲述了决策树的python实现方法。分享给大家供大家参考。具体实现方法如下:

决策树算法优缺点:

优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关的特征数据

缺点:可能会产生过度匹配的问题

适用数据类型:数值型和标称型

算法思想:

1.决策树构造的整体思想:

决策树说白了就好像是if-else结构一样,它的结果就是你要生成这个一个可以从根开始不断判断选择到叶子节点的树,但是呢这里的if-else必然不会是让我们认为去设置的,我们要做的是提供一种方法,计算机可以根据这种方法得到我们所需要的决策树。这个方法的重点就在于如何从这么多的特征中选择出有价值的,并且按照最好的顺序由根到叶选择。完成了这个我们也就可以递归构造一个决策树了

2.信息增益

划分数据集的最大原则是将无序的数据变得更加有序。既然这又牵涉到信息的有序无序问题,自然要想到想弄的信息熵了。这里我们计算用的也是信息熵(另一种方法是基尼不纯度)。公式如下:

数据需要满足的要求:

① 数据必须是由列表元素组成的列表,而且所有的列白哦元素都要具有相同的数据长度
② 数据的最后一列或者每个实例的最后一个元素应是当前实例的类别标签

函数:

calcShannonEnt(dataSet)
计算数据集的香农熵,分两步,第一步计算频率,第二部根据公式计算香农熵

splitDataSet(dataSet, aixs, value)
划分数据集,将满足X[aixs]==value的值都划分到一起,返回一个划分好的集合(不包括用来划分的aixs属性,因为不需要)

chooseBestFeature(dataSet)
选择最好的属性进行划分,思路很简单就是对每个属性都划分下,看哪个好。这里使用到了一个set来选取列表中唯一的元素,这是一中很快的方法

majorityCnt(classList)
因为我们递归构建决策树是根据属性的消耗进行计算的,所以可能会存在最后属性用完了,但是分类还是没有算完,这时候就会采用多数表决的方式计算节点分类

createTree(dataSet, labels)
基于递归构建决策树。这里的label更多是对于分类特征的名字,为了更好看和后面的理解。

复制代码 代码如下:

#coding=utf-8
import operator
from math import log
import time

def createDataSet():
    dataSet=[[1,1,'yes'],
            [1,1,'yes'],
            [1,0,'no'],
            [0,1,'no'],
            [0,1,'no']]
    labels = ['no surfaceing','flippers']
    return dataSet, labels

#计算香农熵
def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for feaVec in dataSet:
        currentLabel = feaVec[-1]
        if currentLabel not in labelCounts:
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob, 2)
    return shannonEnt

def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet
   
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1#因为数据集的最后一项是标签
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet) / float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntropy -newEntropy
        if infoGain > bestInfoGain:
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature
           
#因为我们递归构建决策树是根据属性的消耗进行计算的,所以可能会存在最后属性用完了,但是分类
#还是没有算完,这时候就会采用多数表决的方式计算节点分类
def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    return max(classCount)        
   
def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) ==len(classList):#类别相同则停止划分
        return classList[0]
    if len(dataSet[0]) == 1:#所有特征已经用完
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]#为了不改变原始列表的内容复制了一下
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,
                                        bestFeat, value),subLabels)
    return myTree
   
def main():
    data,label = createDataSet()
    t1 = time.clock()
    myTree = createTree(data,label)
    t2 = time.clock()
    print myTree
    print 'execute for ',t2-t1
if __name__=='__main__':
    main()

希望本文所述对大家的Python程序设计有所帮助。

时间: 2014-11-15

python实现决策树C4.5算法详解(在ID3基础上改进)

一.概论 C4.5主要是在ID3的基础上改进,ID3选择(属性)树节点是选择信息增益值最大的属性作为节点.而C4.5引入了新概念"信息增益率",C4.5是选择信息增益率最大的属性作为树节点. 二.信息增益 以上公式是求信息增益率(ID3的知识点) 三.信息增益率 信息增益率是在求出信息增益值在除以. 例如下面公式为求属性为"outlook"的值: 四.C4.5的完整代码 from numpy import * from scipy import * from mat

基于ID3决策树算法的实现(Python版)

实例如下: # -*- coding:utf-8 -*- from numpy import * import numpy as np import pandas as pd from math import log import operator #计算数据集的香农熵 def calcShannonEnt(dataSet): numEntries=len(dataSet) labelCounts={} #给所有可能分类创建字典 for featVec in dataSet: currentLa

机器学习python实战之决策树

决策树原理:从数据集中找出决定性的特征对数据集进行迭代划分,直到某个分支下的数据都属于同一类型,或者已经遍历了所有划分数据集的特征,停止决策树算法. 每次划分数据集的特征都有很多,那么我们怎么来选择到底根据哪一个特征划分数据集呢?这里我们需要引入信息增益和信息熵的概念. 一.信息增益 划分数据集的原则是:将无序的数据变的有序.在划分数据集之前之后信息发生的变化称为信息增益.知道如何计算信息增益,我们就可以计算根据每个特征划分数据集获得的信息增益,选择信息增益最高的特征就是最好的选择.首先我们先来

机器学习python实战之手写数字识别

看了上一篇内容之后,相信对K近邻算法有了一个清晰的认识,今天的内容--手写数字识别是对上一篇内容的延续,这里也是为了自己能更熟练的掌握k-NN算法. 我们有大约2000个训练样本和1000个左右测试样本,训练样本所在的文件夹是trainingDigits,测试样本所在的文件夹是testDigits.文本文件中是0~9的数字,但是是用二值图表示出来的,如图.我们要做的就是使用训练样本训练模型,并用测试样本来检测模型的性能. 首先,我们需要将文本文件中的内容转化为向量,因为图片大小是32*32,所以

Python实战小程序利用matplotlib模块画图代码分享

Python中的数据可视化 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件. 实战小程序:画出y=x^3的散点图 样例代码如下: #coding=utf-8 import pylab as y #引入pylab模块 x = y.np.linspace(-10, 10, 100) #设置x横坐标范围和点数 y.plot(x, x*x*x,'or') #生成图像 ax = y.gca() a

python实战之实现excel读取、统计、写入的示例讲解

背景 图像领域内的一个国内会议快要召开了,要发各种邀请邮件,之后要录入.统计邮件回复(参会还是不参会等).如此重要的任务,老师就托付给我了.ps: 统计回复邮件的时候,能知道谁参会或谁不参会. 而我主要的任务,除了录入邮件回复,就是统计理事和普通会员的参会情况了(参会的.不参会的.没回复的).录入邮件回复信息没办法只能人工操作,但如果统计也要人工的话,那工作量就太大了(比如在上百人的列表中搜索另外上百人在不在此列表中!!),于是就想到了用python来帮忙,花两天时间不断修改,写了6个版本...

python实战串口助手_解决8串口多个发送的问题

今晚终于解决了串口发送的问题,更改代码如下: def write(self, data): if self.alive: if self.serSer.isOpen(): self.serSer.write(data) def m_send1butOnButtonClick( self, event ): if self.ser.alive: send_data = '' send_data += str(self.m_textCtrl5.GetValue()) self.ser.write(s

python编写分类决策树的代码

决策树通常在机器学习中用于分类. 优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关特征数据. 缺点:可能会产生过度匹配问题. 适用数据类型:数值型和标称型. 1.信息增益 划分数据集的目的是:将无序的数据变得更加有序.组织杂乱无章数据的一种方法就是使用信息论度量信息.通常采用信息增益,信息增益是指数据划分前后信息熵的减少值.信息越无序信息熵越大,获得信息增益最高的特征就是最好的选择. 熵定义为信息的期望,符号xi的信息定义为: 其中p(xi)为该分类的概率. 熵,即信息

Python实战之制作天气查询软件

前言 本文主要给大家介绍的是关于Python制作天气查询软件,下面话不多说了,来一起看看详细的介绍吧 效果图 以前,给大家分享了如何使用 PyQt5 制作猜数游戏和计时器,这一次,我们继续学习:如何使用 PyQt5 制作天气查询软件. 源代码和 exe 文件: github 地址:https://github.com/xflywind/Python-Application 本地下载:http://xiazai.jb51.net/201905/yuanma/weather-python(jb51.

python实战教程之自动扫雷

前言 自动扫雷一般分为两种,一种是读取内存数据,而另一种是通过分析图片获得数据,并通过模拟鼠标操作,这里我用的是第二种方式. 一.准备工作 1.扫雷游戏 我是win10,没有默认的扫雷,所以去扫雷网下载 http://www.saolei.net/BBS/ 2.python 3 我的版本是 python 3.6.1 3.python的第三方库 win32api,win32gui,win32con,Pillow,numpy,opencv 可通过 pip install --upgrade Some

Python实战购物车项目的实现参考

购物车程序 要求如下图 代码 # --*--coding:utf-8--*-- # Author: 村雨 import pprint productList = [('Iphone 8', 10000), ('GTX2080', 8000), ('Z7KP7-GT', 6000), ('Mac pro', 15000), ('Honor 10', 2800), ('Iphone XR', 12000), ('Mi 8', 2999) ] shoppingList = [] print('输入你的

python机器学习理论与实战(二)决策树

决策树也是有监督机器学习方法. 电影<无耻混蛋>里有一幕游戏,在德军小酒馆里有几个人在玩20问题游戏,游戏规则是一个设迷者在纸牌中抽出一个目标(可以是人,也可以是物),而猜谜者可以提问题,设迷者只能回答是或者不是,在几个问题(最多二十个问题)之后,猜谜者通过逐步缩小范围就准确的找到了答案.这就类似于决策树的工作原理.(图一)是一个判断邮件类别的工作方式,可以看出判别方法很简单,基本都是阈值判断,关键是如何构建决策树,也就是如何训练一个决策树. (图一) 构建决策树的伪代码如下: Check i