Java中双重检查锁(double checked locking)的正确实现

目录
  • 前言
  • 加锁
  • 双重检查锁
    • 错误的双重检查锁
    • 隐患
    • 正确的双重检查锁
  • 总结

前言

在实现单例模式时,如果未考虑多线程的情况,就容易写出下面的错误代码:

public class Singleton {
    private static Singleton uniqueSingleton;

    private Singleton() {
    }

    public Singleton getInstance() {
        if (null == uniqueSingleton) {
            uniqueSingleton = new Singleton();
        }
        return uniqueSingleton;
    }
}

在多线程的情况下,这样写可能会导致uniqueSingleton有多个实例。比如下面这种情况,考虑有两个线程同时调用getInstance():

Time Thread A Thread B
T1 检查到uniqueSingleton为空
T2 检查到uniqueSingleton为空
T3 初始化对象A
T4 返回对象A
T5 初始化对象B
T6 返回对象B

可以看到,uniqueSingleton被实例化了两次并且被不同对象持有。完全违背了单例的初衷。

加锁

出现这种情况,第一反应就是加锁,如下:

public class Singleton {
    private static Singleton uniqueSingleton;

    private Singleton() {
    }

    public synchronized Singleton getInstance() {
        if (null == uniqueSingleton) {
            uniqueSingleton = new Singleton();
        }
        return uniqueSingleton;
    }
}

这样虽然解决了问题,但是因为用到了synchronized,会导致很大的性能开销,并且加锁其实只需要在第一次初始化的时候用到,之后的调用都没必要再进行加锁。

双重检查锁

双重检查锁(double checked locking)是对上述问题的一种优化。先判断对象是否已经被初始化,再决定要不要加锁。

错误的双重检查锁

public class Singleton {
    private static Singleton uniqueSingleton;

    private Singleton() {
    }

    public Singleton getInstance() {
        if (null == uniqueSingleton) {
            synchronized (Singleton.class) {
                if (null == uniqueSingleton) {
                    uniqueSingleton = new Singleton();   // error
                }
            }
        }
        return uniqueSingleton;
    }
}

如果这样写,运行顺序就成了:

  • 检查变量是否被初始化(不去获得锁),如果已被初始化则立即返回。
  • 获取锁。
  • 再次检查变量是否已经被初始化,如果还没被初始化就初始化一个对象。

执行双重检查是因为,如果多个线程同时了通过了第一次检查,并且其中一个线程首先通过了第二次检查并实例化了对象,那么剩余通过了第一次检查的线程就不会再去实例化对象。

这样,除了初始化的时候会出现加锁的情况,后续的所有调用都会避免加锁而直接返回,解决了性能消耗的问题。

隐患

上述写法看似解决了问题,但是有个很大的隐患。实例化对象的那行代码(标记为error的那行),实际上可以分解成以下三个步骤:

  1. 分配内存空间
  2. 初始化对象
  3. 将对象指向刚分配的内存空间

但是有些编译器为了性能的原因,可能会将第二步和第三步进行重排序,顺序就成了:

  1. 分配内存空间
  2. 将对象指向刚分配的内存空间
  3. 初始化对象

现在考虑重排序后,两个线程发生了以下调用:

Time Thread A Thread B
T1 检查到uniqueSingleton为空
T2 获取锁
T3 再次检查到uniqueSingleton为空
T4 为uniqueSingleton分配内存空间
T5 将uniqueSingleton指向内存空间
T6 检查到uniqueSingleton不为空
T7 访问uniqueSingleton(此时对象还未完成初始化)
T8 初始化uniqueSingleton

在这种情况下,T7时刻线程B对uniqueSingleton的访问,访问的是一个初始化未完成的对象。

正确的双重检查锁

public class Singleton {
    private volatile static Singleton uniqueSingleton;

    private Singleton() {
    }

    public Singleton getInstance() {
        if (null == uniqueSingleton) {
            synchronized (Singleton.class) {
                if (null == uniqueSingleton) {
                    uniqueSingleton = new Singleton();
                }
            }
        }
        return uniqueSingleton;
    }
}

为了解决上述问题,需要在uniqueSingleton前加入关键字volatile。使用了volatile关键字后,重排序被禁止,所有的写(write)操作都将发生在读(read)操作之前。

至此,双重检查锁就可以完美工作了。

总结

到此这篇关于Java中双重检查锁(double checked locking)的文章就介绍到这了,更多相关Java双重检查锁内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

参考资料:

时间: 2021-09-13

java双重检查锁定的实现代码

在Java程序中,有时候可能需要推迟一些高开销的对象初始化操作,并且只有在使用这些对象时才进行初始化 .这称为延迟初始化或懒加载 看一个不安全的延迟初始化: A线程执行1后,发现对象instance为null,准备对其new,而B线程却先new了,这造成了错误 我们可以利用同步锁,保证正确: 但是对整个方法进行同步开销太大,人们想出了双重检查锁定: 最小范围所用同步锁,利用双重检查看似实现了目的,但这出现了一个问题:当A线程4执行时,线程B的7还未执行完成,而线程A判定instance != n

Java双重检查加锁单例模式的详解

什么是DCL DCL(Double-checked locking)被设计成支持延迟加载,当一个对象直到真正需要时才实例化: class SomeClass { private Resource resource = null; public Resource getResource() { if (resource == null) resource = new Resource(); return resource; } } 为什么需要推迟初始化?可能创建对象是一个昂贵的操作,有时在已知的运

Java中的双重检查(Double-Check)详解

在 Effecitve Java 一书的第 48 条中提到了双重检查模式,并指出这种模式在 Java 中通常并不适用.该模式的结构如下所示: public Resource getResource() { if (resource == null) { synchronized(this){ if (resource==null) { resource = new Resource(); } } } return resource; } 该模式是对下面的代码改进: public synchron

Java的RTTI和反射机制代码分析

RTTI,即Run-Time Type Identification,运行时类型识别.运行时类型识别是Java中非常有用的机制,在Java运行时,RTTI维护类的相关信息.RTTI能在运行时就能够自动识别每个编译时已知的类型. 很多时候需要进行向上转型,比如Base类派生出Derived类,但是现有的方法只需要将Base对象作为参数,实际传入的则是其派生类的引用.那么RTTI就在此时起到了作用,比如通过RTTI能识别出Derive类是Base的派生类,这样就能够向上转型为Derived.类似的,

Java线程同步Lock同步锁代码示例

java线程同步原理 java会为每个object对象分配一个monitor,当某个对象的同步方法(synchronizedmethods)被多个线程调用时,该对象的monitor将负责处理这些访问的并发独占要求. 当一个线程调用一个对象的同步方法时,JVM会检查该对象的monitor.如果monitor没有被占用,那么这个线程就得到了monitor的占有权,可以继续执行该对象的同步方法:如果monitor被其他线程所占用,那么该线程将被挂起,直到monitor被释放. 当线程退出同步方法调用时

Java编程实现A*算法完整代码

前言 A*搜寻算法俗称A星算法.这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法.常用于游戏中 通过二维数组构建的一个迷宫,"%"表示墙壁,A为起点,B为终点,"#"代表障碍物,"*"代表算法计算后的路径 本文实例代码结构: % % % % % % % % o o o o o % % o o # o o % % A o # o B % % o o # o o % % o o o o o % % % % % % % % =======

java线程池工作队列饱和策略代码示例

线程池(Thread Pool) 是并行执行任务收集的实用工具.随着 CPU 引入适合于应用程序并行化的多核体系结构,线程池的作用正日益显现.通过 ThreadPoolExecutor类及其他辅助类,Java 5 引入了这一框架,作为新的并发支持部分. ThreadPoolExecutor框架灵活且功能强大,它支持特定于用户的配置并提供了相关的挂钩(hook)和饱和策略来处理满队列 Java线程池会将提交的任务先置于工作队列中,在从工作队列中获取(SynchronousQueue直接由生产者提交

Java解压zip文件完整代码分享

关于Java解压zip文件,我觉得也没啥好多说的,就是干呗..代码如下: package com.lanyuan.assembly.util; import java.io.BufferedOutputStream; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.util.Enumeration; i

java多线程Thread的实现方法代码详解

之前有简单介绍过java多线程的使用,已经Thread类和Runnable类,为了更好地理解多线程,本文就Thread进行详细的分析. start() 我们先来看看API中对于该方法的介绍: 使该线程开始执行:Java 虚拟机调用该线程的 run 方法. 结果是两个线程并发地运行:当前线程(从调用返回给 start 方法)和另一个线程(执行其 run 方法). 多次启动一个线程是非法的.特别是当线程已经结束执行后,不能再重新启动. 用start方法来启动线程,真正实现了多线程运行,这时无需等待r

Java版超大整数阶乘算法代码详解-10,0000级

当计算超过20以上的阶乘时,阶乘的结果值往往会很大.一个很小的数字的阶乘结果就可能超过目前个人计算机的整数范围.如果需求很大的阶乘,比如1000以上完全无法用简单的递归方式去解决.在网上我看到很多用C.C++和C#写的一些关于大整数阶乘的算法,其中不乏经典但也有很多粗糙的文章.数组越界,一眼就可以看出程序本身无法运行.转载他人文章的时候,代码倒是仔细看看啊.唉,粗糙.过年了,在家闲来蛋疼,仔细分析分析,用Java实现了一个程序计算超大整数阶乘.思想取自网上,由我个人优化和改进. 这个方法采用"数