pandas 删除行

pandas删除指定行详解

2019-04-01
在处理pandas的DataFrame中,如果想像excel那样筛选,只要其中的某一行或者几行,可以使用isin()方法来实现,只需要将需要的行值以列表方式传入即可,还可传入字典,进行指定筛选. pandas.DataFrame中删除包涵特定字符串所在的行:https://www.jb51.net/article/159052.htm 以上所述是小编给大家介绍的pandas删除指定行详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的.在此也非常感谢大家对我们网站的支

pandas删除行删除列增加行增加列的实现

2019-07-05
创建df: >>> df = pd.DataFrame(np.arange(16).reshape(4, 4), columns=list('ABCD'), index=list('1234')) >>> df A B C D 1 0 1 2 3 2 4 5 6 7 3 8 9 10 11 4 12 13 14 15 1,删除行 1.1,drop 通过行名称删除: df = df.drop(['1', '2']) # 不指定axis默认为0 df.drop(['1',

pandas数据处理基础之筛选指定行或者指定列的数据

2018-05-02
pandas主要的两个数据结构是:series(相当于一行或一列数据机构)和DataFrame(相当于多行多列的一个表格数据机构). 本文为了方便理解会与excel或者sql操作行或列来进行联想类比 1.重新索引:reindex和ix 上一篇中介绍过数据读取后默认的行索引是0,1,2,3...这样的顺序号.列索引相当于字段名(即第一行数据),这里重新索引意思就是可以将默认的索引重新修改成自己想要的样子. 1.1 Series 比方说:data=Series([4,5,6],index=['a',

Pandas 数据框增、删、改、查、去重、抽样基本操作方法

2018-04-09
总括 pandas的索引函数主要有三种: loc 标签索引,行和列的名称 iloc 整型索引(绝对位置索引),绝对意义上的几行几列,起始索引为0 ix 是 iloc 和 loc的合体 at是loc的快捷方式 iat是iloc的快捷方式 建立测试数据集: import pandas as pd df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c'],'c': ["A","B","C"]}) p

详解pandas删除缺失数据(pd.dropna()方法)

2019-06-22
1.创建带有缺失值的数据库: import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index = list('abcde'), columns = ['one', 'two', 'three']) # 随机产生5行3列的数据 df.ix[1, :-1] = np.nan # 将指定数据定义为缺失 df.ix[1:-1, 2] = np.nan print('\ndf1') # 输出df1,

python pandas模块基础学习详解

2019-07-03
Pandas类似R语言中的数据框(DataFrame),Pandas基于Numpy,但是对于数据框结构的处理比Numpy要来的容易. 1. Pandas的基本数据结构和使用 Pandas有两个主要的数据结构:Series和DataFrame.Series类似Numpy中的一维数组,DataFrame则是使用较多的多维表格数据结构. Series的创建 >>>import numpy as np >>>import pandas as pd >>>s=p

pandas DataFrame行或列的删除方法的实现示例

2019-08-02
此文我们继续围绕DataFrame介绍相关操作. 平时在用DataFrame时候,删除操作用的不太多,基本是从源DataFrame中筛选数据,组成一个新的DataFrame再继续操作. 1. 删除DataFrame某一列 这里我们继续用上一节产生的DataFrame来做例子,原DataFrame如下: 我们使用drop()函数,此函数有一个列表形参labels,写的时候可以加上labels=[xxx],也可以不加,列表内罗列要删除行或者列的名称,默认是行名称,如果要删除列,则要增加参数axis=

Python Pandas对缺失值的处理方法

2019-09-24
Pandas使用这些函数处理缺失值: isnull和notnull:检测是否是空值,可用于df和series dropna:丢弃.删除缺失值 axis : 删除行还是列,{0 or 'index', 1 or 'columns'}, default 0 how : 如果等于any则任何值为空都删除,如果等于all则所有值都为空才删除 inplace : 如果为True则修改当前df,否则返回新的df fillna:填充空值 value:用于填充的值,可以是单个值,或者字典(key是列名,valu

Python pandas常用函数详解

2018-02-07
本文研究的主要是pandas常用函数,具体介绍如下. 1 import语句 import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime import re 2 文件读取 df = pd.read_csv(path='file.csv') 参数:header=None 用默认列名,0,1,2,3... names=['A', 'B', 'C'...] 自定义列名 index_col='

Python使用Pandas读写Excel实例解析

2019-11-17
这篇文章主要介绍了Python使用Pandas读写Excel实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Pandas是python的一个数据分析包,纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具. Pandas提供了大量能使我们快速便捷地处理数据的函数和方法. Pandas官方文档:https://pandas.pydata.org/pandas-docs/stable/ Pandas中文文档:https:/

pandas 缺失值与空值处理的实现方法

2019-10-10
1.相关函数 df.dropna() df.fillna() df.isnull() df.isna() 2.相关概念 空值:在pandas中的空值是"" 缺失值:在dataframe中为nan或者naT(缺失时间),在series中为none或者nan即可 3.函数具体解释 DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False) 函数作用:删除含有空值的行或列 axis:维度,axis=

Python使用Pandas库常见操作详解

2020-01-13
本文实例讲述了Python使用Pandas库常见操作.分享给大家供大家参考,具体如下: 1.概述 Pandas 是Python的核心数据分析支持库,提供了快速.灵活.明确的数据结构,旨在简单.直观地处理关系型.标记型数据.Pandas常用于处理带行列标签的矩阵数据.与 SQL 或 Excel 表类似的表格数据,应用于金融.统计.社会科学.工程等领域里的数据整理与清洗.数据分析与建模.数据可视化与制表等工作. 数据类型:Pandas 不改变原始的输入数据,而是复制数据生成新的对象,有普通对象构成的

Python Pandas 对列/行进行选择,增加,删除操作

2020-05-17
一.列操作 1.1 选择列 d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])} df = pd.DataFrame(d) print (df ['one']) # 选择其中一列进行显示,列长度为最长列的长度 # 除了 index 和 数据,还会显示 列表头名,和 数据 类型 运行结果: a    1.0 b   

快速解释如何使用pandas的inplace参数的使用

2020-07-22
介绍 在操作数据帧时,初学者有时甚至是更高级的数据科学家会对如何在pandas中使用inplace参数感到困惑. 更有趣的是,我看到的解释这个概念的文章或教程并不多.它似乎被假定为知识或自我解释的概念.不幸的是,这对每个人来说都不是那么简单,因此本文试图解释什么是inplace参数以及如何正确使用它. 让我们来看看一些使用inplace的函数的例子: fillna() dropna() sort_values() reset_index() sort_index() rename() 我已经创建

python中pandas.DataFrame排除特定行方法示例

2017-03-11
前言 大家在使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,关于python中pandas.DataFrame的基本操作,大家可以查看这篇文章. pandas.DataFrame排除特定行 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列表方式传入,还可以传入字典,指定列进行筛选. 但是如果我们只想要所有内容中不包含特定行的内容,却并没有一个isnotin()方法.我今天的工作就遇到了这样的需

python中pandas.DataFrame对行与列求和及添加新行与列示例

2017-03-11
本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧. 方法如下: 导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A

利用JQuery实现datatables插件的增加和删除行功能

2017-01-03
在学习过程中遇到了这个利用JQuery对表格行的增加和删除,特记录下来以供初学者参考. 下面是主要的代码: <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <title>zengjia he shancu </title> <meta charset="utf-8" /> <script src=&quo

自己动手制作jquery插件之自动添加删除行功能介绍

2011-10-11
这是一个我认为功能基本完善的插件,它包括添加.删除.插入.上下移动.索引标识. 数量控制等功能,基本上能满足大部分多行添加的需求,当然,在完成这些功能的前提下,我也尽量保持较少的代码量和易理解的逻辑性. 这个插件的演示页面是http://www.lovewebgames.com/demo/autoAdd/autoAdd.html ,引用自己动手制作jquery插件之自动添加删除行(上)里的介绍,这是一个简单的插件,它的作用是:一个系统中有大量的需要对一个行进行复制添加,希望能够进行批量的操作时,

jquery实现增加删除行的方法

2015-01-31
本文实例讲述了jquery实现增加删除行的方法.分享给大家供大家参考.具体分析如下: 最近做一个投票管理的模块,需要添加问题选项,为了方便,就简单地实现了表格行的添加.删除. 注:需引入jquery.js 先上效果图:(form中默认有4行) 表单代码: 复制代码 代码如下: <div class="oz-form-fields"  style="width:450px;padding-top: 5px">      <table cellpadd

利用Python中的pandas库对cdn日志进行分析详解

2017-03-05
前言 最近工作工作中遇到一个需求,是要根据CDN日志过滤一些数据,例如流量.状态码统计,TOP IP.URL.UA.Referer等.以前都是用 bash shell 实现的,但是当日志量较大,日志文件数G.行数达数千万亿级时,通过 shell 处理有些力不从心,处理时间过长.于是研究了下Python pandas这个数据处理库的使用.一千万行日志,处理完成在40s左右. 代码 #!/usr/bin/python # -*- coding: utf-8 -*- # sudo pip instal

JavaScript动态操作表格实例(添加,删除行,列及单元格)

2013-11-22
复制代码 代码如下: <html><head><meta http-equiv="Content-Type" content="text/html; charset=gb2312"><title>js动态操作表格</title><script language="javascript">function init(){_table=document.getElementByI