keras输出预测值和真实值方式

在使用keras搭建神经网络时,有时需要查看一下预测值和真是值的具体数值,然后可以进行一些其他的操作。这几天查阅了很多资料。好像没办法直接access到训练时的数据。所以我们可以通过回调函数,传入新的数据,然后查看预测值和真是值。

参考这篇解决:

https://stackoverflow.com/questions/47079111/create-keras-callback-to-save-model-predictions-and-targets-for-each-batch-durin

我的解决方法是这样的:

from keras.callbacks import Callback
import tensorflow as tf
import numpy as np
class my_callback(Callback):
 def __init__(self,dataGen,showTestDetail=True):
  self.dataGen=dataGen
  self.showTestDetail=showTestDetail
  self.predhis = []
  self.targets = []
 def mape(self,y,predict):
  diff = np.abs(np.array(y) - np.array(predict))
  return np.mean(diff / y)
 def on_epoch_end(self, epoch, logs=None):
  x_test,y_test=next(self.dataGen)
  prediction = self.model.predict(x_test)
  self.predhis.append(prediction)
  #print("Prediction shape: {}".format(prediction.shape))
  #print("Targets shape: {}".format(y_test.shape))
  if self.showTestDetail:
   for index,item in enumerate(prediction):
    print(item,"=====",y_test[index],"====",y_test[index]-item)
  testLoss=self.mape(y_test,prediction)
  print("test loss is :{}".format(testLoss))

画一下知识点,我们在继承的callback中实现 on_epoch_end方法:

x_test,y_test=next(self.dataGen)

这个数据生成方法是这样的

import numpy as np
def shuffleDatas(x,y):

 shuffleIndex=np.arange(len(x))
 np.random.shuffle(shuffleIndex)
 x=x[shuffleIndex]
 y=y[shuffleIndex]
 return x,y
def dataGen(x,y,batchsize=8,shuffle=True):
 assert len(x) == len(y)
 while True:
  if shuffle:
   x,y=shuffleDatas(x,y)
  index=0
  while index+batchsize<len(x):
   yield (x[index:index+batchsize],y[index:index+batchsize])
   index=index+batchsize

使用yield可以减少内存的使用,而且显得很高级。

补充知识:keras从训练到预测,函数的选择:fit,fit_generator, predict,predict_generator

如下所示:

留下回调函数和如何通过预处理来建立生成输入的函数这两个问题

以上这篇keras输出预测值和真实值方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

时间: 2020-06-27

keras获得某一层或者某层权重的输出实例

一个例子: print("Loading vgg19 weights...") vgg_model = VGG19(include_top=False, weights='imagenet') from_vgg = dict() # 因为模型定义中的layer的名字与原始vgg名字不同,所以需要调整 from_vgg['conv1_1'] = 'block1_conv1' from_vgg['conv1_2'] = 'block1_conv2' from_vgg['conv2_1']

使用keras内置的模型进行图片预测实例

keras 模块里面为我们提供了一个预训练好的模型,也就是开箱即可使用的图像识别模型 趁着国庆假期有时间我们就来看看这个预训练模型如何使用吧 可用的模型有哪些? 根据官方文档目前可用的模型大概有如下几个 1.VGG16 2.VGG19 3.ResNet50 4.InceptionResNetV2 5.InceptionV3 它们都被集成到了keras.applications 中 模型文件从哪来 当我们使用了这几个模型时,keras就会去自动下载这些已经训练好的模型保存到我们本机上面 模型文件会

Keras 加载已经训练好的模型进行预测操作

使用Keras训练好的模型用来直接进行预测,这个时候我们该怎么做呢?[我这里使用的就是一个图片分类网络] 现在让我来说说怎么样使用已经训练好的模型来进行预测判定把 首先,我们已经又有了model模型,这个模型被保存为model.h5文件 然后我们需要在代码里面进行加载 model = load_model("model.h5") 假设我们自己已经写好了一个load_data函数[load_data最好是返回已经通过了把图片转成numpy的data,以及图片对应的label] 然后我们先

利用keras加载训练好的.H5文件,并实现预测图片

我就废话不多说了,直接上代码吧! import matplotlib matplotlib.use('Agg') import os from keras.models import load_model import numpy as np from PIL import Image import cv2 #加载模型h5文件 model = load_model("C:\\python\\python3_projects\\cat_dog\\cats_dogs_fifty_thousand.h

Tensorflow加载预训练模型和保存模型的实例

使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获! 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.in

jquery如何实现在加载完iframe的内容后再进行操作

为iframe添加onload事件 ie使用attachEvent("onload",function(){}) firefox.chrome使用addEventListener("onload",function(){}),或者直接使用onload=function(){} 注:在firefox.chrome下 iframe.attachEvent返回undefined,可被翻译成false,用此可以解决和ie下绑定onload事件写法不同的缺陷.

解决Pytorch 加载训练好的模型 遇到的error问题

这是一个非常愚蠢的错误 debug的时候要好好看error信息 提醒自己切记好好对待error!切记!切记! -----------------------分割线---------------- pytorch 已经非常友好了 保存模型和加载模型都只需要一条简单的命令 #保存整个网络和参数 torch.save(your_net, 'save_name.pkl') #加载保存的模型 net = torch.load('save_name.pkl') 因为我比较懒我就想直接把整个网络都保存下来,然

pytorch 加载(.pth)格式的模型实例

有一些非常流行的网络如 resnet.squeezenet.densenet等在pytorch里面都有,包括网络结构和训练好的模型. pytorch自带模型网址:https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-models/ 按官网加载预训练好的模型: import torchvision.models as models # pretrained=True就可以使用预训练的模型 resnet18 = mod

pytorch实现从本地加载 .pth 格式模型

可以从官网加载预训练好的模型: import torchvision.models as models model = models.vgg16(pretrained = True) print(model) 但是经常会出现因为下载速度太慢而出现requests.exceptions.ConnectionError: ('Connection aborted.', TimeoutError(10060, '由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败.', None, 1

Pytorch加载部分预训练模型的参数实例

前言 自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了.对于深度学习的初学者,Pytorch值得推荐.今天主要主要谈谈Pytorch是如何加载预训练模型的参数以及代码的实现过程. 直接加载预选脸模型 如果我们使用的模型和预训练模型完全一样,那么我们就可以直接加载别人的模型,还有一种情况,我们在训练自己模型的过程中,突然中断了,但只要我们保存了之前的模型的参数也可以使用下面的代码直

浅谈Tensorflow模型的保存与恢复加载

近期做了一些反垃圾的工作,除了使用常用的规则匹配过滤等手段,也采用了一些机器学习方法进行分类预测.我们使用TensorFlow进行模型的训练,训练好的模型需要保存,预测阶段我们需要将模型进行加载还原使用,这就涉及TensorFlow模型的保存与恢复加载. 总结一下Tensorflow常用的模型保存方式. 保存checkpoint模型文件(.ckpt) 首先,TensorFlow提供了一个非常方便的api,tf.train.Saver()来保存和还原一个机器学习模型. 模型保存 使用tf.trai

Three.js加载外部模型的教程详解

1.  首先我们要在官网: https://threejs.org/ 下载我们three.js压缩包,并将其中的build文件夹下的three.js通过script标签对的src属性导入到我们的页面中 2.  创建three.js核心对象 Scene(场景) Camera(相机) Light(光源) Mesh(模型) Renderer(渲染器) 最后一步就是渲染显示在我们的页面上了renderer.render(scene,camera) 3.  OBJ模型的导入 <script type=&quo

tensorflow 加载部分变量的实例讲解

tensorflow模型保存为saver = tf.train.Saver()函数,saver.save()保存模型,代码如下: import tensorflow as tf v1= tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="v1") v2= tf.Variable(tf.zeros([200]), name="v2") saver = tf.train.Saver() with tf