python+pytest自动化测试函数测试类测试方法的封装

目录
  • 前言
  • 一、测试用例封装的一般规则
  • 三、测试类/方法的封装
  • 四、示例代码
  • 总结

前言

今天呢,笔者想和大家聊聊python+pytest接口自动化中将代码进行封装,只有将测试代码进行封装,才能被测试框架识别执行。

例如单个接口的请求代码如下:

import requests
headers = {
    "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36"
}
url = "https://mp.toutiao.com/profile_v4/"
res = requests.get(url=h_url, headers=headers)

假设我们需要将上面这段代码编写成测试框架能执行的测试用例,仅仅只是这样写代码显然是不够的,还需要进行如下补充:

需要将代码封装成单元测试框架 (pytest或unittest) 能识别的测试函数或测试类,否则将不会被识别执行。需要加上断言,即结果与期望之间的对比,单元测试框架才能判定该用例执行结果是否通过,结果==期望则说明通过,否则失败。

python中函数以及类的封装这里不做过多说明,这篇文章的目的是让大家明白在接口自动化测试中一般怎样封装测试代码

一、测试用例封装的一般规则

测试用例的封装有两种,测试函数和测试类,封装的一般规则如下:

一个测试函数对应一条测试用例。测试类中可定义多个测试方法,一个测试方法对应一条测试用例,测试类可以看作是一个测试用例集。pytest中测试函数或测试方法的命名必须以test开头,测试类名必须以Test开头。具体命名规则可以参考我之前的文章pytest(3)-测试命名规则。对于单接口的测试校验,一个单接口的测试用例只包含一个接口请求,即将一个接口请求封装成一个测试函数或测试方法。对于场景(多接口) 的测试校验,一条场景测试用例需请求多个接口,因此需要将多个接口请求封装在同一个测试函数或方法中。一般封装一个接口的正向校验、异常校验封装成不同的方法,并封装在同一个测试类中。如定义一个登陆的测试类,正确用户名、密码请求封装成一个方法 (即一条测试用例),正确用户名、错误密码请求封装成另一个方法 (即另一条测试用例)。也可以将某个功能点或功能相关联的接口用例封装在同一个测试类中。比如个人中心涉及到的接口,可以封装在同一个测试类中二、测试函数的封装

一般而言,一个测试函数对应一条用例。上面的代码编写成一条测试用例,示例如下:

强调,pytest中测试函数命名必须以test开头,如test_get_home。

三、测试类/方法的封装

一个测试类相当于一个测试用例集,类中的每个方法对应一条测试用例。以登录接口为例,封装成测试类,示例如下:

强调,pytest中测试类命名需要以Test开头,如TestLogin,且测试类中不能有init方法。测试类中测试方法必须以test开头,如test_login_normal。

四、示例代码

pytest中可以使用命令行或者使用代码方式即 pytest.main() 执行用例,具体可参考文章pytest(1)-简介。

完整的示例代码如下:

import requests
import pytest
import json
def test_get_home():
    '''
    请求首页接口
    :return:
    '''
    headers = {
        "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36"
    }
    url = "https://www.cnblogs.com/lfr0123/"
    res = requests.get(url=url, headers=headers)
    # 断言,判断返回结果的code是否等于200,当然实际接口测试中一般返回结果中还会有别的字段需要断言
    assert res.status_code == 200

class TestLogin:
    '''
    登录接口校验
    '''
    url = "http://127.0.0.1:5000/login"
    headers = {"Content-Type": "application/json;charset=utf8"}

    def test_login_normal(self):
        '''正确用户名、正确密码登录'''
        data = {
            "username": "AndyLiu",
            "password": "123456"
        }
        res = requests.post(url=self.url, json=data, headers=self.headers)
        # 断言
        assert res.status_code == 200
        assert json.loads(res.text)["token"]

    def test_login_error(self):
        '''正确用户名、错误密码登录'''
        data = {
            "username": "AndyLiu",
            "password": "111111"
        }
        res = requests.post(url=self.url, json=data, headers=self.headers)
        # 断言
        assert res.status_code == 200
        assert not json.loads(res.text)["token"]
if __name__ == '__main__':
    pytest.main()

总结

  • 测试函数、测试类/测试方法的封装,其实不管是什么单元测试框架,遵循的方式都一样。
  • 而在命名方式上各有自己的要求,比如pytest与unittest中测试命名方法有一定的区别。
  • 把一个有自己断言的函数或方法看成是一条测试用例,那么测试类其实就是一个含有一条或者多条测试用例的测试用例集,类中的每个方法对应一条测试用例。
  • 一个测试类中放置哪些测试方法,换句话说一个测试用例集中应该包含哪些测试用例,这个可以按照项目自身情况而定,也可按照测试人员自己的想法而定,主旨就是要清晰明了

到此这篇关于python+pytest自动化测试函数测试类测试方法的封装的文章就介绍到这了,更多相关python测试函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2022-06-21

Python pytest装饰器总结(实例详解)

几个常用装饰器 pytest.ini 配置文件 例子: [pytest] addopts = -v -s --html=py_test/scripts/report/report.html -p no:warnings --reruns=10 testpaths = ./py_test/scripts python_files= test_rerun.py python_classes = Test* python_function = test* xfail_strict = true add

Python实现DBSCAN聚类算法并样例测试

什么是聚类算法?聚类是一种机器学习技术,它涉及到数据点的分组.给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组.理论上,同一组中的数据点应该具有相似的属性和/或特征,而不同组中的数据点应该具有高度不同的属性和/或特征.聚类是一种无监督学习的方法,是许多领域中常用的统计数据分析技术. 常用的算法包括K-MEANS.高斯混合模型(Gaussian Mixed Model,GMM).自组织映射神经网络(Self-Organizing Map,SOM) 重点给大家介绍Python实现D

Python基于聚类算法实现密度聚类(DBSCAN)计算【测试可用】

本文实例讲述了Python基于聚类算法实现密度聚类(DBSCAN)计算.分享给大家供大家参考,具体如下: 算法思想 基于密度的聚类算法从样本密度的角度考察样本之间的可连接性,并基于可连接样本不断扩展聚类簇得到最终结果. 几个必要概念: ε-邻域:对于样本集中的xj, 它的ε-邻域为样本集中与它距离小于ε的样本所构成的集合. 核心对象:若xj的ε-邻域中至少包含MinPts个样本,则xj为一个核心对象. 密度直达:若xj位于xi的ε-邻域中,且xi为核心对象,则xj由xi密度直达. 密度可达:若样

Python基础教程之pytest参数化详解

目录 前言 源代码分析 装饰测试类 装饰测试函数 单个数据 一组数据 组合数据 标记用例 嵌套字典 增加测试结果可读性 总结 前言 上篇博文介绍过,pytest是目前比较成熟功能齐全的测试框架,使用率肯定也不断攀升.在实际 工作中,许多测试用例都是类似的重复,一个个写最后代码会显得很冗余.这里,我们来了解一下 @pytest.mark.parametrize装饰器,可以很好的解决上述问题. 源代码分析 def parametrize(self,argnames, argvalues, indir

python接口调用已训练好的caffe模型测试分类方法

训练好了model后,可以通过python调用caffe的模型,然后进行模型测试的输出. 本次测试主要依靠的模型是在caffe模型里面自带训练好的结构参数:~/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel,以及结构参数 :~/caffe/models/bvlc_reference_caffenet/deploy.prototxt相结合,用python接口进行调用. 训练的源代码以及相应的注释如下所示

Python测试框架pytest介绍

目录 一.Pytest简介 二.Pytest安装 三.Pytest测试执行 四.测试类主函数 五.断言方法 六.常用命令详解 七.接口调用 一.Pytest简介 Pytest is a mature full-featured Python testing tool that helps you write better programs.The pytest framework makes it easy to write small tests, yet scales to support

Appium+Python+pytest自动化测试框架的实战

菜鸟一枚,写的不好勿喷,大家一起学习 先简单介绍一下目录,再贴一些代码,代码里有注释 Basic目录下写的是一些公共的方法,Data目录下写的是测试数据,image存的是测试失败截图,Log日志文件,Page测试的定位元素,report测试报告,Test测试用例,pytest.ini是pytest启动配置文件,requirements.txt需要安装的py模块,run.py运行文件 Basic/base.py 里面封装了 一些方法,元素的点击,输入,查找,还有一些自己需要的公共方法也封装在里面,

Python自动化测试框架pytest的详解安装与运行

目录 1. pytest的介绍 2. pytest的安装 1. 使用以下命令进行安装 2. 检查是否成功安装正确版本 3. pytest识别测试的条件 4. pytest的运行 4.1 Pycharm中调用 4.2 Python代码中调用 4.3 使用命令行调用 常用参数列表 参数演示示例: 1. pytest的介绍 pytest是一个非常成熟的全功能的python测试工具,它主要有以下特征: 简单灵活,容易上手: 支持简单的单元测试和复杂的功能测试 显示详细的断言失败信息 能自动识别测试模块和

python的unittest测试类代码实例

nittest单元测试框架不仅可以适用于单元测试,还可以适用WEB自动化测试用例的开发与执行,该测试框架可组织执行测试用例,并且提供了丰富的断言方法,判断测试用例是否通过,最终生成测试结果.今天笔者就总结下如何使用unittest单元测试框架来进行WEB自动化测试. 题目: 编写一个名为Employee的类,其方法__init__()接受名.姓和年薪,并将它们都存储在属性中.编写一个名为give_raise()的方法,它默认将年薪增加5000美元,但也能够接受其他的年薪增加量. 为Employe

Python文件操作基本流程代码实例

文件操作之基本流程 #文本 近日,上市药企--浙江莎普爱思药业股份有限公司频遭质疑. 12月2日,一篇名为<一年卖出7.5亿的洗脑"神药",请放过中国老人>的文章称, 多位眼科医生并不认可莎普爱思滴眼液的"白内障防治功效".质疑者认为, 莎普爱思滴眼液是"假科普,真营销",通过广告误导患者. 针对质疑,莎普爱思3日晚发布的公告称, 0.5%苄达 赖氨酸滴眼液已于上世纪90年代通过了临床试验, 是一种安全的.有效的抗白内障药物.假的 #

java内部测试类代码详解

我们一般使用的java内部类有4种形式:一般内部类.局部内部类.匿名内部类.静态内部类.以下是我作的一个测试,以说明各种内部类的特性. 有关内部类的特性,代码中有详细说明,如下. /* * java内部类测试 * * InterObj反射结果: * * private int i * private InterObj$InterA ia * public InterObj() * public static void main(java.lang.String[]) * private int

Python进度条的制作代码实例

这篇文章主要介绍了Python进度条的制作代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 import sys,time #导入模块 for i in range(50): #进度条的长度 sys.stdout.write("#") #进度条的内容,这里要注意了,pycharm有可能不显示write的方法 sys.stdout.flush() #刷新缓存 time.sleep(0.5) #间隔时间,和shell的sleep差不

Python实现自定义读写分离代码实例

这篇文章主要介绍了Python实现自定义读写分离代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 思路 自定义Session类 重写get_bind方法 根据self._flushing判断读写操作, 选择对应的数据库 自定义SQLAlchemy类 重写create_session, 在其中使用自定义的Session类 from flask import Flask from flask_sqlalchemy import SQLAlch

Python多线程获取返回值代码实例

这篇文章主要介绍了Python多线程获取返回值代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在使用多线程的时候难免想要获取其操作完的返回值进行其他操作,下面的方法以作参考: 一,首先重写threading类,使其满足调用特定的方法获取其返回值 import threading class MyThread(threading.Thread): """重写多线程,使其能够返回值""" d

python识别文字(基于tesseract)代码实例

这篇文章主要介绍了python识别文字(基于tesseract)代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Ubuntu版本: 1.tesseract-ocr安装 sudo apt-get install tesseract-ocr 2.pytesseract安装 sudo pip install pytesseract 3.Pillow 安装 sudo pip install pillow 开始写代码: from PIL impo

Python csv模块使用方法代码实例

这篇文章主要介绍了Python csv模块使用方法代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 import csv def openSCV(filename): with open("renting.csv",'r',encoding = 'utf_8_sig') as f: f_csv = csv.reader(f) for row in f_csv: print(row) def Test1(): headers =

Python定时发送天气预报邮件代码实例

这篇文章主要介绍了Python定时发送天气预报邮件代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 用python爬虫爬到的天气预报,使用smtplib和email模块可以发送到邮箱,使用schedule模块可以定时发送.以下是代码- #导入模块 import requests from bs4 import BeautifulSoup import smtplib from email.mime.text import MIMEText

python 图像处理画一个正弦函数代码实例

这篇文章主要介绍了python 图像处理画一个正弦函数代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 import numpy as np from PIL import Image import matplotlib.pyplot as plt import math size = 300 new_im = Image.new("RGBA",(size,size)) #创建一个空的图片 a_img = np.array(ne